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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 Our preliminary exam will be available from Thursday at 11am
(after office hours) and must be submitted by Saturday at
10pm EST. You will have 150 minutes to work on the exam
with an extra 30 minutes for scanning and submitting via
gradescope. The exam will cover through and including §2.2
in the text (which I hope to finish Today).

4 But first, are there any questions from last time?
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Linear Maps

Definition

Let V and W be vector spaces over the same field F. A function
T : V →W is called a linear transformation or a linear map if for all
x , y ∈ V and a ∈ F we have

1 T (x + y) = T (x) + T (y), and

2 T (ax) = aT (x).

Proposition

Suppose that T : V →W is linear. Then T (0V ) = 0W .

Proposition

Suppose T : V →W is linear. If v1, . . . , vn ∈ V and ak ∈ F, then

T
( n∑
k=1

akvk
)

=
n∑

k=1

akT (vk).
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The Null Space and Range

Definition

Suppose that T : V →W is a linear transformation. Then the null
space or kernel of T is the set N(T ) = { v ∈ V : T (v) = 0W }.
The range of T is the set R(T ) = {T (v) : v ∈ V }.

Proposition

If T : V →W is linear, then N(T ) is a subspace of V and R(T ) is
a subspace of W .
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Rank and Nullity

Definition

Suppose that T : V →W is a linear transformation. If N(T ) and
R(T ) are finite dimensional, then we call nullity(T ) = dim(N(T ))
the nullity of T and rank(T ) = dim(R(T )) the rank of T .

Remark

One of the things that makes linear transformations special is that
they “preserve dimension” as described in the next result. In our
text, it is called the Dimension Theorem. Other texts call it the
Rank-Nullity Theorem.

Theorem (Dimension Theorem)

Suppose that T : V →W is linear and V is finite dimensional.
Then

dim(V ) = nullity(T ) + rank(T ).
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Proof

Proof.

Let n = dim(V ). Suppose that nullity(T ) = dim(N(T )) = k and
that { v1, . . . , vk } is a basis for N(T ). Note that 0 ≤ k ≤ n. Then
we can extend { v1, . . . , vk } to a basis
β = { v1, . . . , vk , vk+1, . . . , vn } for V . Since n = k + (n − k), it
will suffice to prove that α = {T (vk+1), . . . ,T (vn) } is a basis for
R(T ). Since β generates V , R(T ) = Span(T (β)) =
Span({T (v1), . . . ,T (vn) }) = Span({T (vk+1), . . . ,T (vn) }).
Hence α generates R(T ). Hence we just need to see that α is
linearly independent.
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Proof

Proof continued.

Suppose that
∑n

j=k+1 bjT (vj) = 0W . We need to prove that this
forces bj = 0 for k + 1 ≤ j ≤ n. Since T is linear, we have
T
(∑n

j=k+1 bjvj
)

= 0V and
∑n

j=k+1 bjvj ∈ N(T ). Hence there are
scalars aj such that

n∑
j=k+1

bjvj =
k∑

j=1

ajvj .

Thus if bj = −aj for 1 ≤ j ≤ k , then

n∑
j=1

bjvj = 0V .

Since β is a basis, and hence linearly independent, this forces
bj = 0 for all 1 ≤ j ≤ n. But then bj = 0 for k + 1 ≤ j ≤ n.

Dana P. Williams Math 24: Winter 2021 Lecture 8



Review from Appendix B

Remark

Recall that a function f : V →W is called one-to-one if
f (v1) = f (v2) implies v1 = v2. We call a function f : V →W onto
if given w ∈W there is a v ∈ V such that T (v) = w . Thus if T
is linear, then T is onto if and only if R(T ) = W .

Proposition

Suppose that T : V →W is a linear transformation. Then T is
one-to-one if and only if N(T ) = {0V }.
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Proof

Proof.

Suppose T is one-to-one and x ∈ N(T ). Then
T (x) = 0W = T (0V ). Thus x = 0V and N(T ) = {0V }.

Conversely, suppose that N(T ) = {0V }. Suppose that
T (x1) = T (x2). Then since T is linear, T (x1 − x2) = 0W . Thus
x1 − x2 ∈ N(T ). Hence x1 − x2 = 0V and x1 = x2. That is, T is
one-to-one.
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Break Time

Time for a break and some questions.
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One-To-One and Onto

Theorem

Suppose that V and W are finite-dimensional vector spaces over F with
dim(V ) = dim(W ). Suppose also that T : V →W is linear. Then the
following are equivalent.

1 T is one-to-one.
2 rank(T ) = dim(V ).
3 T is onto.

Proof.

Recall that the Dimension Theorem implies
dim(V ) = nullity(T ) + rank(T ).
(1)=⇒(2): If T is one-to-one, then N(T ) = {0V } and nullity(T ) = 0.
Thus rank(T ) = dim(V ).
(2)=⇒(3): If rank(T ) = dim(V ), then rank(T ) = dim(R(T )) = dim(W ).
Hence R(T ) = W and T is onto.
(3)=⇒(1): If T is onto, then R(T ) = W . Hence
rank(T ) = dim(W ) = dim(V ). Hence nullity(T ) = 0 and N(T ) = {0V }.
Hence T is one-to-one.
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The Importance of Being Finite Dimensional

Example

If V = P(R), then we can view polynomials as functions. Since the
derivative of a polynomial is a polynomial, T (p) = p′ is a linear
map T : P(R)→ P(R). It is clearly onto: given p ∈ P(F), let

q(x) =

∫ x

0
p(t) dt.

Then T (q) = p. But T is not one-to-one! T (p1) = T (p2) if and
only if p1 and p2 differ by a constant (polynomial).
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Example

Example

Define T : P2(R)→ P2(R) by T (p) = p + p′. You can check that
T is a linear transformation. Since { 1, x , x2 } is a basis for P2(R),
R(T ) = Span({T (1),T (x),T (x2) } = Span({ 1, x + 1, x2 + 2x }).
Since it is easy to see that { 1, x + 1, x2 + 2x } is linearly
independent, and since dim(P2(R)) = 3, it follows that
R(T ) = P2(R). Hence T is onto and therefore one-to-one as well.
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Generating Linear Transformations

Theorem

Let V and W be vector spaces over a field F. Suppose that
{ v1, . . . , vn } is a basis for V . Given vectors w1, . . . ,wn in W (not
necessarily distinct), there is a unique linear transformation
T : V →W such that T (vk) = wk for 1 ≤ k ≤ n.

Proof.

If x ∈ V , then there are unique scalars bk such that
x =

∑n
k=1 bkvk . Therefore we can define a function T : V →W

by setting T (x) =
∑n

k=1 bkwk . Of course, T (vk) = wk .

I claim that T is linear. Suppose x , y ∈ V and a ∈ F. Say
x =

∑n
k=1 bkvk and y =

∑n
k=1 ckvk . Then

ax + y =
∑n

k=1(abk + ck)vk and by definition T (ax + y) =∑n
k=1(abk + ck)wk = a

∑n
k=1 bkvk +

∑n
k=1 ckvk = aT (x) + T (y).

This proves the claim.
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Proof

Proof Continued.

We still need to see that this uniquely determines T . Suppose that
S : V →W is linear and S(vk) = wk for 1 ≤ k ≤ n. Then if
x ∈

∑n
k=1 bkvk ∈ V ,

S(x) = S
(∑n

k=1 bkvk
)

=
∑n

k=1 bkS(vk) =
∑n

k=1 bkwk = T (x).
That is, S = T and T is uniquely determined.

Corollary

Suppose that V and W are vector spaces over F and that both
T : V →W and S : V →W are linear. If { v1, . . . , vn } is a basis
for V , then S = T if and only if S(vk) = T (vk) for all 1 ≤ k ≤ n.
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Break Time Again

Let’s take a short break. Any questions?
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Getting Ordered

Definition

An ordered basis for a finite dimensional vector space V of
dimension n is a basis { v1, v2, . . . , vn } considered as an (ordered)
n-tuple.

Remark

Both { e1, e2, e3 } and { e3, e2, e1 } are the standard basis for F3.
But they are different as ordered bases. Naturally, we call
{ e1, e2, . . . , en } the standard ordered basis for Fn and
{ 1, x , . . . , xn } the standard ordered basis for Pn(F).
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Coordinate Vectors

Notation

Let β = { v1, . . . , vn } be an ordered basis for a vector space V .
Then for each x ∈ V , there is a unique vector
(a1, . . . , an) ∈ Fn—that is, an ordered n-tuple—(a1, . . . , an) ∈ Fn

such that

x =
n∑

k=1

akvk .

We call (a1, . . . , an) the coordinate vector of x relative to β. We
use the notation [x ]β = (a1, . . . , an) or

[x ]β =


a1
a2
...
an

 .
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Examples

Example

Let β = { 1, x , x2 } be the standard ordered basis for P2(F). Then
[2x2 − 3x + 7]β = (7,−3, 2). Or, as in the text,

[2x2 − 3x + 7]β =

 7
−3

2

.

Example

Let σ = { e1, e2, e3 } be the standard ordered basis for F3. Then
[(1, 2, 3)]σ = (1, 2, 3). This is because (1, 2, 3) = e1 + 2e2 + 3e3. In
general, if σ is the standard ordered basis for Fn, then [x ]σ = x for
all x ∈ Fn.
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The Matrix of a Linear Transformation

Definition

Suppose that V and W are finite-dimensional vector spaces with
ordered bases β = { v1, . . . , vn } and γ = {w1, . . . ,wm },
respectively. (Note that dim(V ) = n and dim(W ) = m.) Then the
matrix of T with respect to β and γ is the m × n-matrix [T ]γβ
whose j th-column is the coordinate vector [T (vj)]γ . When V = W

and β = γ, then we usually write [T ]β in place of [T ]ββ.

Remark

This is easier to make sense of if we agree—as do the authors of
our text—to think [T (vj)] as a column vector. Then

[T ]γβ =
[
[T (v1)]γ [T (v2)]γ · · · [T (vn)]γ

]
.
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Example

Example

Define T : P2(R)→ P3(R) by T (p) =
∫ x
0 p(t) dt. Let σ2 and σ3

be the standard ordered bases for P2(R) and P3(R). Find the
matrix [T ]σ3

σ2
.

Solution

Recall that σ2 = { 1, x , x2 }. Then T (1) = x . Therefore
[T (1)]σ3 = (0, 1, 0, 0). We have T (x) = 1

2x
2 while T (x2) = 1

3x
3.

Hence

[T ]σ3
σ2

=


0 0 0
1 0 0
0 1

2 0
0 0 1

3

 .
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Standard Matrix

Example

Let T : R3 → R2 be the linear transformation
T (x , y , z) = (x + y − z , y + 3z). Find the matrix of T with
respect to the standard ordered bases σ3 and σ2.

Solution

Here T (e1) = (1, 0), T (e2) = (1, 1), and T (e3) = (−1, 3). Then
[T ]σ2

σ3
=
[
[T (e1]σ2 [T (e2)]σ2 [T (e3)]σ2

]
. That is

[T ]σ2
σ3

=

(
1 1 −1
0 1 3

)
.
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Enough

1 That is enough for today.
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