Math 24: Winter 2021 Lecture 10

Dana P. Williams

Dartmouth College

Friday, January 29, 2021

- **1** We should be recording.
- Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
- **③** The preliminary exam is due Saturday by 10pm.
- I suggest blocking out a three hour window now so that you can work undisturbed. Although officially a take home exam, it is effectively an "in class" exam where you get to pick when you take it.
- Is But first, are there any questions from last time?

Theorem

Suppose that V, W, and Z are finite-dimensional vector spaces with ordered bases β , γ , and α , respectively. Suppose that $T: V \rightarrow W$ and $S: W \rightarrow Z$ are linear. Then

 $[ST]^{\alpha}_{\beta} = [S]^{\alpha}_{\gamma}[T]^{\gamma}_{\beta}.$

Proposition

Suppose that $A = [u_1 \cdots u_n]$ is a $m \times n$ matrix with columns u_1, \ldots, u_n . If B is a $p \times m$ -matrix, then BA is the $p \times n$ matrix with columns equal to Bu_j . That is, in my notation,

$$BA = B[u_1 \cdots u_n] = [Bu_1 Bu_2 \cdots Bu_n].$$

Theorem

Suppose that V and W are finite-dimensional vector spaces over **F** and that $T : V \to W$ is a linear transformation. Let β and γ be ordered bases for V and W, respectively. Then for all $v \in V$, we have

$$[T(\mathbf{v})]_{\gamma} = [T]_{\beta}^{\gamma} [\mathbf{v}]_{\beta}$$

Remark

You would be wise to note carefully the placement of the superscripts and subscripts.

Proof.

Let $U : \mathbf{F} \to V$ be the linear map given by U(a) = av. Let $\alpha = \{1\}$ be the standard ordered basis for \mathbf{F} . Then $TU : \mathbf{F} \to W$ is linear and

$$egin{aligned} [\mathcal{T}(\mathbf{v})]_{\gamma} &= [\mathcal{T}\mathcal{U}(1)]_{\gamma} = [\mathcal{T}\mathcal{U}]^{\gamma}_{lpha} \ &= [\mathcal{T}]^{\gamma}_{eta}[\mathcal{U}]^{eta}_{lpha} = [\mathcal{T}]^{\gamma}_{eta}[\mathcal{U}(1)]_{eta} \ &= [\mathcal{T}]^{\gamma}_{eta}[\mathbf{v}]_{eta}. \end{aligned}$$

Example

Let $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$. Then if $x = (a, b, c) \in \mathbf{F}^3$, we get a vector $Ax \in \mathbf{F}^2$ by $\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a-2c \\ b+c \end{pmatrix}$. Since the rules of matrix algebra imply that A(kx + y) = kAx + Ay, it is easy to see that this map is linear from \mathbf{F}^3 to \mathbf{F}^2 . This is an easy way to produce linear maps, and we will see that all linear maps between finite-dimension vector spaces are "essentially of this form".

Left-Multiplication

Definition

Let $A \in M_{m \times n}(\mathbf{F})$. Then we obtain a map $L_A : \mathbf{F}^n \to \mathbf{F}^m$ defined by $L_A(x) = Ax$ where we view x as a $n \times 1$ -matrix. We call L_A the left-multiplication transformation determined by A.

Theorem

Let $A \in M_{m \times n}(\mathbf{F})$. Then $L_A : \mathbf{F}^n \to \mathbf{F}^m$ is linear. Moreover, if σ_n and σ_m are the standard ordered bases for \mathbf{F}^n and \mathbf{F}^m , respectively, then

Proof

Proof.

Just as in the previous example, the rules of matrix algebra tell us that L_A is a linear transformation from \mathbf{F}^n to \mathbf{F}^m .

(1) The *j*th-column of $[L_A]_{\sigma_n}^{\sigma_m}$ is $[L_A e_j]_{\sigma_m} = [Ae_j]_{\sigma_m} = Ae_j$, which is the *j*th-column of *A*.

(2) If $L_A = L_B$, then $A = [L_A]_{\sigma_n}^{\sigma_m} = [L_B]_{\sigma_n}^{\sigma_m} = B$. The converse is immediate.

(3) By item (1), $[L_{aA+B}]_{\sigma_n}^{\sigma_m} = aA + B$ and $[aL_A + L_B]_{\sigma_n}^{\sigma_m} = a[L_A]_{\sigma_n}^{\sigma_m} + [L_{AB}]_{\sigma_n}^{\sigma_m} = aA + B$. Now the result follows from item (2).

(4) Let $C = [T]_{\sigma_n}^{\sigma_m}$. Then for all $x \in \mathbf{F}^n$, $Tx = [Tx]_{\sigma_m} = [T]_{\sigma_n}^{\sigma_m} [x]_{\sigma_n} = Cx = L_C x$. Hence $T = L_C$. Uniqueness follows from item (2).

(5) Let σ_p be the standard ordered basis for **R**^p. Then on the one hand, [L_{AE}]^{σm}_{σp} = AE by item (1). On the other hand, [L_AL_E]^{σm}_{σp} = [L_A]^{σm}_{σn}[L_E]^{σn}_{σp} = AE. Now the result follows from item (2).
(6) This is straightforward.

Proposition

Suppose that A, B, and C are matrices such that (AB)C is defined. Then A(BC) is defined and (AB)C = A(BC).

Proof.

It is an exercise to check that A(BC) defined if and only if (AB)C is. Also, it is clear that $(L_AL_B)L_C = L_A(L_BL_C)$. Now pass to matrices using the previous result.

Time for a break and some questions.

Definition

A linear map $T: V \to W$ is said to be invertible if there is a function $U: W \to V$ such that $UT = I_V$ and $TU = I_W$. Then we call U an inverse for T.

Proposition

Suppose that $T: V \to W$ is linear. Then T is invertible if and only if T is one-to-one and onto. Furthermore, the inverse U is unique and linear. We usually denote the inverse by T^{-1} .

Proof

Proof.

Suppose that T is one-to-one and onto. Then we can define $U: W \to V$ by U(w) = v if and only if T(v) = w. Then UT(v) = w and TU(w) = w. Hence T is invertible.

On the other hand, suppose T is invertible with inverse U. If T(x) = T(y), then x = UT(x) = UT(y) = y and T is one-to-one. If $w \in W$, then T(U(w)) = w and T is onto. This proves the first assertion.

Suppose that S is also an inverse to T. Then $S = SI_W = S(TU) = (ST)U = I_VU = U$. Thus the inverse unique.

Suppose $w, w' \in W$. Then w = T(v) and w' = T(v'). Then T(av + v') = aw + w'. Therefore U(aw + w') = U(aT(v) + T(v')) = UT(av + v') = av + v' = aU(w) + U(w')and U is linear.

Definition

If V and W are vector spaces over **F**, then we say that V and W are isomorphic if there is an invertible linear transformation $T: V \to W$. In that case, we call T an isomorphism of V onto W.

Remark

Note that if $T: V \to W$ is an isomorphism of V onto W, then $T^{-1}: W \to V$ is an isomorphism of W onto V. Hence the situation is symmetric.

Proposition

Suppose that V and W are isomorphic. Then V is finite dimensional if and only if W is. In that case, $\dim(V) = \dim(W)$.

Proof.

Let $T: V \to W$ be an isomorphism. Suppose that β is finite basis for V, then $T(\beta)$ generates R(T) = W. Hence W is finite dimensional. Since we can reverse the roles of V and W, this proves the first statement. Now if V and W are finite dimensional, we have dim(V) = nullity(T) + rank(T). Since T is one-to-one, nullity(T) = 0 and rank $(T) = \dim(V)$. Since T is onto, rank $(T) = \dim(R(T)) = \dim(V)$. Hence dim $(V) = \dim(W)$. Time for a break and questions.

Definition

A matrix $A \in M_{n \times n}(\mathbf{F})$ is invertible if there is a matrix $B \in M_{n \times n}(\mathbf{F})$ such that $AB = I_n = BA$.

Remark

As with linear maps, if *B* exists, it is unique. If *C* were another such matrix, then $C = CI_n = C(AB) = (CA)B = I_nB = B$. Hence we call *B* the inverse of *A* and foolishly write A^{-1} in place of *B*.

Example

If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and if $ad - bc \neq 0$, then you can verify (by multiplying matrices) that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

As we will discover in the next chapter, finding when inverses exist and computing them is something of a chore.

Theorem

Suppose that V and W are finite-dimensional vector spaces over with ordered bases β and γ , respectively. Then a linear map $T: V \to W$ is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible. In this case, $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$.

Proof.

If T is invertible, then we have already seen that $\dim(V) = \dim(W)$. Hence $[T]^{\gamma}_{\beta}$ is a square matrix. Let $\dim(V) = n$. Then

$$I_n = [I_V]_\beta = [T^{-1}T]_\beta^\beta = [T^{-1}]_\beta^\gamma [T]_\beta^\gamma$$

Similarly, $[I_n] = [I_W]_{\gamma} = [T]_{\beta}^{\gamma} T^{-1}]_{\beta}^{\gamma}$. It follows that $[T]_{\beta}^{\gamma}$ is invertible with inverse $[T^{-1}]_{\beta}^{\gamma}$.

Proof.

Now suppose that $[T]^{\gamma}_{\beta}$ is invertible with inverse $B = (B_{ij})$ (so that $B[T]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta}B = I_n$). Let $\beta = \{v_1, \ldots, v_n\}$ and $\gamma = \{w_1, \ldots, w_n\}$. Let S be the unique linear transformation $S: W \to V$ such that $S(w_j) = \sum_{k=1}^n B_{kj}v_k$. Then $[S]^{\beta}_{\gamma} = B$. Then

$$[UT]_{\beta} = [U]_{\gamma}^{\beta} [T]_{\beta}^{\gamma} = B[T]_{\beta}^{\gamma} = I_{n}.$$

Therefore $UT = I_V$. Similarly, $TU = I_W$ and U is an inverse for T. That is, T is invertible as claimed.

Corollary

If $A \in M_{n \times n}(\mathbf{F})$, then A is invertible if and only if L_A is and $L_A^{-1} = L_{A^{-1}}$.

Theorem

Suppose that V and W are finite-dimensional vector spaces over the same field \mathbf{F} . Then V is isomorphic to W if and only if $\dim(V) = \dim(W)$.

Proof.

We have already see that if V and W are isomorphic, then $\dim(V) = \dim(W)$. So suppose that $\dim(V) = \dim(W)$. Let $\beta = \{v_1, \ldots, v_n\}$ be a basis for V and $\gamma = \{w_1, \ldots, w_n\}$ be a basis for W. Let $T : V \to W$ be the unique linear transformation such that $T(v_k) = w_k$ for $1 \le k \le n$. Then $R(T) = \text{Span}(T(\beta)) = \text{Span}(\gamma) = W$. Therefore T is onto. Since $\dim(V) = \dim(W)$, T is also one-to-one. Then T is invertible and hence an isomorphism.

Corollary

Let V be a vector space over **F**. Then dim(V) = n if and only if V is isomorphic to **F**ⁿ.

Remark

We have the tools to say a bit more. If $\beta = \{v_1, \ldots, v_n\}$ is a basis for *V*, then you showed on homework that $\varphi_{\beta}(x) := [x]_{\beta}$ is an onto linear transformation of *V* onto \mathbf{F}^n . Since $\dim(V) = n = \dim(\mathbf{F}^n)$, φ_{β} is an isomorphism called the standard representation of *V* with respect to β .

Remark

Suppose that V and W are finite-dimensional vector spaces over **F** with dim(V) = n and dim(W) = m. Then we showed earlier that $T \mapsto [T]^{\gamma}_{\beta}$ is a one-to-one and onto linear transformation of $\Phi : \mathcal{L}(V, W) \to M_{m \times n}(\mathbf{F})$. Hence $\mathcal{L}(V, W)$ and $M_{m \times n}(\mathbf{F})$ are isomorphic and dim($\mathcal{L}(V, W)$) = dim($M_{m \times n}(\mathbf{F})$) = mn.

1 That is enough for today.