Math 24: Winter 2021 Lecture 11

Dana P. Williams
Dartmouth College

Monday, February 1, 2021

Let's Get Started

(1) We should be recording.
(2) Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
(3) The preliminary exam has been returned via gradescope. I have sent and email with solutions and comments.
(9) All solutions should be formulated clearly using full sentences. In particular, your solutions should not look like a first draft! I hope we will do better on the midterm.
(3) Do not submit regrade requests. After studying the solutions, you can arrange a zoom meeting to discuss your exam.
(0) But first, are there any questions from last time?

Reveiw

Definition

If V and W are vector spaces over \mathbf{F}, then we say that V and W are isomorphic if there is an invertible linear transformation $T: V \rightarrow W$. In that case, we call T an isomorphism of V onto W.

Definition

A matrix $A \in M_{n \times n}(\mathbf{F})$ is invertible if there is a matrix $B \in M_{n \times n}(\mathbf{F})$ such that $A B=I_{n}=B A$. Then B, if it exists, is unique. We call B the inverse of A and write A^{-1} for B.

Review

Theorem

Suppose that V and W are finite-dimensional vector spaces over with ordered bases β and γ, respectively. linear map $T: V \rightarrow W$ is invertible if and only if $[T]_{\beta}^{\gamma}$ is invertible. In this case, $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$.

Theorem

Suppose that V and W are finite-dimensional vector spaces over the same field \mathbf{F}. Then V is isomorphic to W if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Our Favorite

Corollary

Let V be a vector space over \mathbf{F}. Then $\operatorname{dim}(V)=n$ if and only if V is isomorphic to \mathbf{F}^{n}.

Remark

We have the tools to say a bit more. If $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is an ordered basis for V, then you showed on homework that $\varphi_{\beta}(x):=[x]_{\beta}$ is an onto linear transformation of V onto \mathbf{F}^{n}. Since $\operatorname{dim}(V)=n=\operatorname{dim}\left(\mathbf{F}^{n}\right), \varphi_{\beta}$ is an isomorphism called the standard representation of V with respect to β.

A Nice Diagram

Remark (A Useful Picture)

Suppose V and W are finite dimensional with ordered bases $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\gamma=\left\{w_{1}, \ldots, w_{m}\right\}$, respectively. Suppose that $T: V \rightarrow W$ is linear. Since $[T(v)]_{\gamma}=[T]_{\beta}^{\gamma}[v]_{\beta}$, we have the following nice picture:

where the vertical arrows are the standard representation isomorphisms.

Unfinished Business

Theorem

Suppose $A, B \in M_{n \times n}(\mathbf{F})$. If $A B=I_{n}$, then both A and B are invertible with $B=A^{-1}$ and $A=B^{-1}$.

Proof.

Let $L_{A}: \mathbf{F}^{n} \rightarrow \mathbf{F}^{n}$ the left-multiplication transformation. Fix $x \in \mathbf{F}^{n}$. Then $B x \in \mathbf{F}^{n}$ and $L_{A}(B x)=A(B x)=(A B) x=I_{n} x=x$. Therefore L_{A} is onto. Since L_{A} maps \mathbf{F}^{n} to itself, L_{A} must also be one-to-one. Therefore L_{A} is invertible which implies A is invertible.
Then $A^{-1}=A^{-1} I_{n}=A^{-1}(A B)=B$. Then B is invertible (since A^{-1} is) and $B^{-1}=\left(A^{-1}\right)^{-1}=A$.

Linear Maps and Matrices

Remark

Suppose that V and W are finite-dimensional vector spaces over \mathbf{F} with $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Then we showed earlier that $T \mapsto[T]_{\beta}^{\gamma}$ is a one-to-one and onto linear transformation of $\Phi: \mathcal{L}(V, W) \rightarrow M_{m \times n}(\mathbf{F})$. Hence $\mathcal{L}(V, W)$ and $M_{m \times n}(\mathbf{F})$ are isomorphic and $\operatorname{dim}(\mathcal{L}(V, W))=\operatorname{dim}\left(M_{m \times n}(\mathbf{F})\right)=m n$.

Break Time

This finishes $\S 2.4$ in the text. We'll finish $\S 2.5$ next and skip $\S 2.6$ and $\S 2.7$ and move onto $\S 3.1$.

Now let's take a break and see if there are any questions.

Remark

Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered basis for V. Then it is straightforward to see that $\left[I_{V}\right]_{\beta}=I_{n}$. But if γ is another ordered basis, a little thought should reveal that $[I V]_{\beta}^{\gamma}$ is unlikely to be the identity matrix or even easy to compute-since $\left[I_{V}\right]_{\beta}^{\gamma}=\left[\left[v_{1}\right]_{\gamma} \cdots\left[v_{n}\right]_{\gamma}\right]$, we would have to compute $\left[v_{k}\right]_{\gamma}$ for $k=1,2, \ldots, n$. But it just might turn out to be worth the effort.

Change of Basis Matrices

Proposition

Suppose that β and γ are both ordered bases for a vector space V. Then for all $v \in V$,

$$
[v]_{\gamma}=[I V]_{\beta}^{\gamma}[v]_{\beta} .
$$

Hence we call $Q=[I V]_{\beta}^{\gamma}$ the change of coordinates matrix from β-coordinates to γ-coordinates. Furthermore, $[I V]_{\beta}^{\gamma}$ is invertible with $\left([I V]_{\beta}^{\gamma}\right)^{-1}=[I V]_{\gamma}^{\beta}$ which is the change of coordinate matrix from γ-coordinates to β-coordinates.

Proof

Proof.

We have

$$
[v]_{\gamma}=[I V(v)]_{\gamma}=[I V]_{\beta}^{\gamma}[v]_{\beta} .
$$

This establishes (\ddagger). Of course $\left[I_{V}\right]_{\beta}^{\gamma}$ is invertible because I_{V} is and $\left(\left[I_{V}\right]_{\beta}^{\gamma}\right)^{-1}=\left[I_{V}^{-1}\right]_{\gamma}^{\beta}=\left[I_{V}\right]_{\gamma}^{\beta}$.

Example

Example

Recall that if $x \in \mathbf{F}^{n}$ and σ is the standard ordered basis for \mathbf{F}^{n}, then $[x]_{\sigma}=x$. This leads to another useful observation. Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ another ordered basis for \mathbf{F}^{n}. Then $[I]_{\beta}^{\sigma}$ is easy to compute (where I've written / in place of $I_{\boldsymbol{F}^{n}}$ for obvious reasons)!

$$
\left.\left.\begin{array}{rl}
{\left[/_{\mathbf{F}^{n}}\right]_{\beta}^{\sigma}} & =\left[\left[I\left(v_{1}\right)\right]_{\sigma} \cdots\right. \\
& \left.\cdots\left[I\left(v_{n}\right)\right]_{\sigma}\right] \\
& =\left[\left[v_{1}\right]_{\sigma} \cdots\right.
\end{array}\right]\left[v_{n}\right]_{\sigma}\right]=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]
$$

More Fun Than You Might Think

Example

Let $\beta=\{(2,1),(1,1)\}$ and $\gamma=\{(3,-2),(-1,1)\}$ be ordered bases for \mathbf{R}^{2}. Find the change of coordinate matrix $[I]_{\beta}^{\gamma}$.

Solution

It is not too bad to find $\left[\binom{2}{1}\right]_{\gamma}$ and $\left[\binom{1}{1}\right]_{\gamma}$. For example, you just have to solve $a(3,-2)+b(-1,1)=(2,1)$ and then $\left[\binom{2}{1}\right]_{\gamma}=\binom{a}{b}$. But we can also note that if σ is the standard ordered basis then

$$
\begin{aligned}
{[I]_{\beta}^{\gamma} } & =[I]_{\sigma}^{\gamma}[I]_{\beta}^{\sigma}=\left([I]_{\gamma}^{\sigma}\right)^{-1}[I]_{\beta}^{\sigma} \\
& =\left(\begin{array}{rr}
3 & -1 \\
-2 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 1 \\
2 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & 2 \\
7 & 5
\end{array}\right) .
\end{aligned}
$$

Break Time

Time for a short break and some questions.

Change of Basis

Remark

Much of our attention going forward will be on linear maps
$T: V \rightarrow V$ from a vector space to itself. We call such maps linear operators. A key question for us will be to see what sort of matrices we get for a linear operator for different choices of basis for V.

Theorem (Change of Basis)

Suppose that $T: V \rightarrow V$ is a linear operator on a finite-dimensional vector space. Let β and γ both be ordered basis for V. Let $Q=[I V]_{\gamma}^{\beta}$ be the change of coordinates matrix from γ-coordinates to β-coordinates. Then

$$
[T]_{\gamma}=Q^{-1}[T]_{\beta} Q .
$$

Proof

Proof.

We have

$$
\begin{aligned}
{[T]_{\gamma} } & =[I V T]_{\gamma}^{\gamma}=[I V]_{\beta}^{\gamma}[T]_{\gamma}^{\beta} \\
& =[I V]_{\beta}^{\gamma}[T I V]_{\gamma}^{\beta}=[I V]_{\beta}^{\gamma}[T]_{\beta}^{\beta}[I V]_{\gamma}^{\beta} \\
& \left.=\left([I V]_{\gamma}^{\beta}\right)^{-1}[T]_{\beta}^{\beta} I I\right]_{\gamma}^{\beta}=Q^{-1}[T]_{\beta} Q .
\end{aligned}
$$

Remark

I have introduced the notation $Q=\left[I_{V}\right]_{\gamma}^{\beta}$ only because the text does. I will usually write $[I V]_{\gamma}^{\beta}$ as I think the meaning is clearer.

Example

Example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the left multiplication operator L_{A} for $A=\left(\begin{array}{cc}7 & -10 \\ 5-8\end{array}\right)$. That is, $T(x, y)=\binom{7 x-10 y}{5 x-8 y}$. Let β be the ordered basis $\{(2,1),(1,1)\}$. Find $[T]_{\beta}$.

Solution

Let σ be the standard basis for \mathbf{R}^{2}. Then

$$
\begin{aligned}
{[T]_{\beta} } & =[I]_{\sigma}^{\beta}[T]_{\sigma}[I]_{\beta}^{\sigma}=\left([I]_{\beta}^{\sigma}\right)^{-1} A[I]_{\beta}^{\sigma} \\
& =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
7 & -10 \\
5 & -8
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
4 & -3 \\
2 & -3
\end{array}\right)=\left(\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right)
\end{aligned}
$$

Remark

Naturally, the properties of the operator T are much easier to understand if we use β-coordinates. One of our goals down the road will be to discover how to find β !!

Projections

Remark

The map $P: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by $P(x, y)=(x, 0)$ is the projection of \mathbf{R}^{2} onto the subspace $W_{1}=\{(x, 0): x \in \mathbf{R}\}$ along the subspace $W_{2}=\{(0, y): y \in \mathbf{R}\}$. Of course if σ is the standard ordered basis in $\mathbf{R}^{2},[P]_{\sigma}=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$. More generally, we can consider the ordered basis $\beta=\left\{u_{1}, u_{2}\right\}$. Then we can let $W_{1}=\operatorname{Span}\left(\left\{u_{1}\right\}\right)$ and $W_{2}=\operatorname{Span}\left(\left\{u_{2}\right\}\right)$. Then $\mathbf{R}^{2}=W_{1} \oplus W_{2}$. (You should check this.) Then we can consider the projection P of \mathbf{R}^{2} onto W_{1} along W_{2}. Thus if $v=a u_{1}+b u_{2}$, then $P(v)=a u_{1}$. Just as above, we have $[P]_{\beta}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. But for practical purposes, we'd much rather have a formula for $[P]_{\sigma}$! This is what the Change of Basis Theorem is for (among other things)!

Working Out an Example

Example

To make things concrete, let $\beta=\{(1,3),(1,1)\}$ and consider the project P of \mathbf{R}^{2} onto the span of $(1,3)$ along the span of $(1,1)$.
(This can also be described as the projection onto the line $y=3 x$ along the line $y=x$.) But

$$
\begin{aligned}
{[P]_{\sigma} } & =[I]_{\beta}^{\sigma}[P]_{\beta}[I]_{\sigma}^{\beta} \\
& =\left(\begin{array}{lll}
1 & 1 \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{lll}
1 & 0 \\
3 & 0
\end{array}\right)\left(-\frac{1}{2}\right)\left(\begin{array}{cc}
1 & -1 \\
-3 & 1
\end{array}\right) \\
& =\left(-\frac{1}{2}\right)\left(\begin{array}{cc}
1 & -1 \\
3 & -3
\end{array}\right) .
\end{aligned}
$$

Hence $P(x, y)=\binom{-\frac{1}{2}(x-y)}{-\frac{3}{2}(x-y)}$.

Enough

(1) That is enough for today.

