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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 Homework #4 is due today.

4 But first, are there any questions from last time?
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Change of Basis

Remark

Much of our attention going forward will be on linear maps
T : V → V from a vector space to itself. We call such maps linear
operators. A key question for us will be to see what sort of matrices
we get for a linear operator for different choices of basis for V .

Theorem (Change of Basis)

Suppose that T : V → V is a linear operator on a
finite-dimensional vector space. Let β and γ both be ordered basis
for V . Let Q = [IV ]βγ be the change of coordinates matrix from
γ-coordinates to β-coordinates. Then

[T ]γ =
(
[IV ]γβ

)−1
[T ]β[IV ]βγ .
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Motivation

1 I should be clear now—especially in view of the Change of
Basis Theorem—that the matrices [IV ]γβ and their inverses will
play a big role going forward.

2 Computing [IV ]γβ will involve systems of linear equations.

3 We will also want to determine when a matrix is invertible and
how to compute the inverse when it exists.
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Systems

Formally, a system of m linear equations in n unknowns x1, . . . , xn
over a field F can be written as follows:

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

...

am1x1 + · · ·+ amnxn = bm

where the aij and bk are scalars in F. A solution is any vector
(x1, . . . , xn) ∈ Fn that satisfies each equation simultaneously. Later
in this chapter, we will write this system more compactly as

Ax = b

where A = (aij) is the m × n matrix with (i , j)th-entry aij ,
x = (x1, . . . , xn) and b = (b1, . . . , bm).
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Elementary Operations

Recall that we noted earlier that we could obtain systems of
equations with the same sets of solutions if we restricted ourselves
to three basic—or elementary—operations:

1 Interchanging two equations.

2 Multiplying an equation by a nonzero scalar.

3 Adding a multiple of one equation to a different equation.

Since we are going to focus on matrices for a bit, this serves to
motivate the following definition.
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Elementary Row and Column Operations

Definition

Let A be a m × n-matrix. An elementary row [column] operation
on A is one of the following.

Type 1: Interchanging two rows [columns].

Type 2: Multiplying a row [column] by a nonzero scalar.

Type 3: Adding a multiple of one row [column] to another
row [column].

Example

Working out examples is easy (Document Camera).

Dana P. Williams Math 24: Winter 2021 Lecture 12



Reversible

Lemma

If we can obtain a matrix Q from a matrix P by an elementary row
[column] operation, then we can obtain P from Q by an
elementary row [column] operation of the same type. Thus
elementary operations are always reversible.

Proof.

I will leave this as an exercise.
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Elemenatary Matrices

Definition

An elementary matrix is a n × n-matrix obtained from the identity
matrix In be a single elementary row or column operation. An
elementary matrix is said to be of type 1, type 2, or type 3
depending on the type of elementary operation performed on In.

Examples

Back to the Document Camera.

Remark

It is worth noting that every elementary matrix can be obtained
two ways—either by an elementary row operation or and
elementary column operation.
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What’s so Cool About Elementary Matrices?

Theorem

Suppose that A is a m × n-matrix. If B is the m × n-matrix
obtained from A via an elementary row operation, then B = EA
where E is the m ×m-elementary matrix obtained from Im via the
same elementary row operation. Similarly, if C is obtained from A
via an elementary column operation, then C = AD where D is an
elementary n × n-matrix obtained from In via the same elementary
column operation.

Proof.

The proof is a bit tedious and not particularly enlightening, so we
will omit it.
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Elementary Inverses

Proposition

Every elementary matrix is invertible and its inverse is an
elementary matrix of the same type.

Proof.

Let E be an elementary n× n-matrix. If E was obtained from In by
an elementary row operation, then we can obtain In from E by
performing an elementary row operation of the same type. By our
theorem, there is a n × n-elementary matrix D of the same type as
E such that DE = In. But we have proved this means E is
invertible with inverse E−1 = D.
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Break Time

Time for a break and some questions.
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Rank of a Matrix

Definition

If A ∈ Mm×n(F), then its rank—written rank(A)—is the rank of
the associated left-multiplication operator LA : Fn → Fm.

Remark

Thus rank(A) = dim(R(LA)). Therefore rank(A) ≤ m and equals
m exactly when LA is onto.
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Rank and Invertibility

Proposition

Let A be a n × n matrix. Then A is invertible if and only if
rank(A) = n.

Proof.

If rank(A) = n, then LA : Fn → Fn is onto. Then LA is also
one-to-one and LA is invertible. Therefore A is invertible.

But if A is invertible, then so is LA. Hence LA is onto and
rank(A) = n.
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Ranks of Linear Transformations

Theorem

Suppose that T : V →W is a linear transformation. Suppose that V and
W are finite dimensional with ordered bases β and γ, respectively. Then

rank(T ) = rank
(
[T ]γβ

)
.

Proof.

We need to prove that dim(R(T )) = dim(R(L[T ]γβ
)). Recall our pretty

picture from the last lecture:

V W

Fn Fm.

T

ϕβ ϕγ

L
[T ]

γ
β

where the vertical arrows are the standard representation isomorphisms.
This implies that ϕγ

(
R(T )

)
= R(L[T ]γβ

).
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Proof

Proof Continued.

Let α = {w1, . . . ,wk } be a basis for R(T ). It is not hard to see that
ϕγ(α) = {ϕγ(w1), . . . , ϕγ(wk) } spans R(L[T ]γβ

). So it suffices to see that

{ϕγ(w1), . . . , ϕγ(wk) } is linearly independent. So, suppose that there are
scalars aj such that

0Fm =
k∑

j=1

ajϕγ(wj) = ϕγ

( k∑
j=1

ajwj

)
.

Since ϕγ is an isomorphism (and hence one-to-one), this implies

k∑
j=1

ajwj = 0W .

Since α is a basis, this implies each aj = 0. This is what we needed to
prove. return
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Rank Preserving

Theorem

Let A ∈ Mm×n(F) and let P and Q be invertible m ×m- and
n × n-matrices, respectively. Then

rank(A) = rank(PA) = rank(AQ) = rank(PAQ).

Proof.

Since LQ is onto,

R(LAQ) = R(LALQ) = LA
(
LQ(Fn)

)
= LA(Fn) = R(LA).

Hence rank(AQ) = rank(A).

Since LP is an isomorphism,
dim
(
R(LA)

)
= dim

(
LP
(
R(LA)

))
= dim(R(LPA)). (This is proved

just as earlier .) Hence rank(A) = rank(PA). But by the above,
rank(PA) = rank(PAQ).
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Elementary Ranks

Corollary

Elementary row and column operations preserve the rank of a
matrix.

Proof.

Elementary row and column operations amount to pre- and post-
multiplying by and elementary—and hence invertible—matrix. But
if E and D are elementary matrices, then rank(A) = rank(EA) and
rank(A) = rank(AD).
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The Columns of A

Proposition

Let A be a m × n matrix with columns v1, . . . , vn. That is,
A = [v1 · · · vn]. Then R(LA) = Span

(
{ v1, . . . , vn }

)
Proof.

We have R(LA) = {Ax : x ∈ Fn }. But if x ∈ Fn, then
x = (x1, . . . , xn) =

∑n
k=1 xkek where { e1, . . . , en } is the standard

basis. Then Ax = A
(∑n

k=1 xkek
)

=
∑n

k=1 xkAek =
∑n

k=1 xkvk ∈
Span

(
{ v1, . . . , vn }

)
. This shows R(LA) ⊂ Span

(
{ v1, . . . , vn }

)
and

the other containment is also easy to see by reversing the
above.
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A Basis for the Range

Corollary

The rank of a m × n-matrix A = [v1 · · · vn] is the maximum
number of linearly independent columns in A.

Proof.

By the previous result, the columns of A, { v1, . . . , vn } generate
R(LA). Hence we know that some subset if a basis for R(LA).
Thus rank(A) = dim(R(LA)) is the maximum number of linearly
independent vectors in { v1, . . . , vn }.
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Enough

1 That is enough for today.
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