Math 24: Winter 2021 Lecture 12

Dana P. Williams

Dartmouth College

Wednesday, February 3, 2021

- We should be recording.
- Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
- **③** Homework #4 is due today.
- But first, are there any questions from last time?

Remark

Much of our attention going forward will be on linear maps $T: V \rightarrow V$ from a vector space to itself. We call such maps linear operators. A key question for us will be to see what sort of matrices we get for a linear operator for different choices of basis for V.

Theorem (Change of Basis)

Suppose that $T : V \to V$ is a linear operator on a finite-dimensional vector space. Let β and γ both be ordered basis for V. Let $Q = [I_V]_{\gamma}^{\beta}$ be the change of coordinates matrix from γ -coordinates to β -coordinates. Then

$$[T]_{\gamma} = \left([I_V]_{\beta}^{\gamma} \right)^{-1} [T]_{\beta} [I_V]_{\gamma}^{\beta}.$$

- I should be clear now—especially in view of the Change of Basis Theorem—that the matrices [*I_V*]^γ_β and their inverses will play a big role going forward.
- **2** Computing $[I_V]^{\gamma}_{\beta}$ will involve systems of linear equations.
- We will also want to determine when a matrix is invertible and how to compute the inverse when it exists.

Systems

Formally, a system of *m* linear equations in *n* unknowns x_1, \ldots, x_n over a field **F** can be written as follows:

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$
$$a_{21}x_1 + \dots + a_{2n}x_n = b_2$$
$$\vdots \qquad \vdots$$
$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

where the a_{ij} and b_k are scalars in **F**. A solution is any vector $(x_1, \ldots, x_n) \in \mathbf{F}^n$ that satisfies each equation simultaneously. Later in this chapter, we will write this system more compactly as

$$Ax = b$$

where $A = (a_{ij})$ is the $m \times n$ matrix with $(i, j)^{\text{th}}$ -entry a_{ij} , $x = (x_1, \ldots, x_n)$ and $b = (b_1, \ldots, b_m)$.

Recall that we noted earlier that we could obtain systems of equations with the same sets of solutions if we restricted ourselves to three basic—or elementary—operations:

- Interchanging two equations.
- Multiplying an equation by a nonzero scalar.
- Adding a multiple of one equation to a different equation. Since we are going to focus on matrices for a bit, this serves to motivate the following definition.

Definition

Let A be a $m \times n$ -matrix. An elementary row [column] operation on A is one of the following.

- Type 1: Interchanging two rows [columns].
- Type 2: Multiplying a row [column] by a nonzero scalar.
- Type 3: Adding a multiple of one row [column] to another row [column].

Example

Working out examples is easy (Document Camera).

Lemma

If we can obtain a matrix Q from a matrix P by an elementary row [column] operation, then we can obtain P from Q by an elementary row [column] operation of the same type. Thus elementary operations are always reversible.

Proof.

I will leave this as an exercise.

Definition

An elementary matrix is a $n \times n$ -matrix obtained from the identity matrix I_n be a single elementary row or column operation. An elementary matrix is said to be of type 1, type 2, or type 3 depending on the type of elementary operation performed on I_n .

Examples

Back to the Document Camera.

Remark

It is worth noting that every elementary matrix can be obtained two ways—either by an elementary row operation or and elementary column operation.

Theorem

Suppose that A is a $m \times n$ -matrix. If B is the $m \times n$ -matrix obtained from A via an elementary row operation, then B = EAwhere E is the $m \times m$ -elementary matrix obtained from I_m via the same elementary row operation. Similarly, if C is obtained from A via an elementary column operation, then C = AD where D is an elementary $n \times n$ -matrix obtained from I_n via the same elementary column operation.

Proof.

The proof is a bit tedious and not particularly enlightening, so we will omit it.

Proposition

Every elementary matrix is invertible and its inverse is an elementary matrix of the same type.

Proof.

Let *E* be an elementary $n \times n$ -matrix. If *E* was obtained from I_n by an elementary row operation, then we can obtain I_n from *E* by performing an elementary row operation of the same type. By our theorem, there is a $n \times n$ -elementary matrix *D* of the same type as *E* such that $DE = I_n$. But we have proved this means *E* is invertible with inverse $E^{-1} = D$. Time for a break and some questions.

Definition

If $A \in M_{m \times n}(\mathbf{F})$, then its rank—written rank(A)—is the rank of the associated left-multiplication operator $L_A : \mathbf{F}^n \to \mathbf{F}^m$.

Remark

Thus $rank(A) = dim(R(L_A))$. Therefore $rank(A) \le m$ and equals m exactly when L_A is onto.

Proposition

Let A be a $n \times n$ matrix. Then A is invertible if and only if rank(A) = n.

Proof.

If rank(A) = n, then $L_A : \mathbf{F}^n \to \mathbf{F}^n$ is onto. Then L_A is also one-to-one and L_A is invertible. Therefore A is invertible.

But if A is invertible, then so is L_A . Hence L_A is onto and rank(A) = n.

Ranks of Linear Transformations

Theorem

Suppose that $T : V \to W$ is a linear transformation. Suppose that V and W are finite dimensional with ordered bases β and γ , respectively. Then

 $\operatorname{rank}(T) = \operatorname{rank}([T]^{\gamma}_{\beta}).$

Proof.

We need to prove that dim(R(T)) = dim(R($L_{[T]_{\beta}^{\gamma}}$)). Recall our pretty picture from the last lecture:

where the vertical arrows are the standard representation isomorphisms. This implies that $\varphi_{\gamma}(\mathsf{R}(\mathcal{T})) = \mathsf{R}(\mathcal{L}_{[\mathcal{T}]^{\gamma}_{\beta}}).$

Proof

Proof Continued.

Let $\alpha = \{ w_1, \ldots, w_k \}$ be a basis for R(*T*). It is not hard to see that $\varphi_{\gamma}(\alpha) = \{ \varphi_{\gamma}(w_1), \ldots, \varphi_{\gamma}(w_k) \}$ spans R($L_{[T]_{\beta}^{\gamma}}$). So it suffices to see that $\{ \varphi_{\gamma}(w_1), \ldots, \varphi_{\gamma}(w_k) \}$ is linearly independent. So, suppose that there are scalars a_i such that

$$\mathbb{O}_{\mathbf{F}^m} = \sum_{j=1}^k a_j \varphi_{\gamma}(w_j) = \varphi_{\gamma} \Big(\sum_{j=1}^k a_j w_j \Big).$$

Since φ_{γ} is an isomorphism (and hence one-to-one), this implies

$$\sum_{j=1}^k a_j w_j = 0_W.$$

Since α is a basis, this implies each $a_j = 0$. This is what we needed to prove. Freture

Rank Preserving

Theorem

Let $A \in M_{m \times n}(\mathbf{F})$ and let P and Q be invertible $m \times m$ - and $n \times n$ -matrices, respectively. Then

$$rank(A) = rank(PA) = rank(AQ) = rank(PAQ).$$

Proof.

Since L_Q is onto,

$$\mathsf{R}(L_{AQ}) = \mathsf{R}(L_A L_Q) = L_A(L_Q(\mathbf{F}^n)) = L_A(\mathbf{F}^n) = \mathsf{R}(L_A).$$

Hence rank(AQ) = rank(A).

Since L_P is an isomorphism, $\dim(R(L_A)) = \dim(L_P(R(L_A))) = \dim(R(L_{PA}))$. (This is proved just as rank(PA). But by the above, $\operatorname{rank}(PA) = \operatorname{rank}(PAQ)$.

Corollary

Elementary row and column operations preserve the rank of a matrix.

Proof.

Elementary row and column operations amount to pre- and postmultiplying by and elementary—and hence invertible—matrix. But if *E* and *D* are elementary matrices, then rank(A) = rank(EA) and rank(A) = rank(AD).

Proposition

Let A be a $m \times n$ matrix with columns v_1, \ldots, v_n . That is, $A = [v_1 \cdots v_n]$. Then $\mathbf{R}(L_A) = \text{Span}(\{v_1, \ldots, v_n\})$

Proof.

We have $R(L_A) = \{Ax : x \in \mathbf{F}^n\}$. But if $x \in \mathbf{F}^n$, then $x = (x_1, \dots, x_n) = \sum_{k=1}^n x_k e_k$ where $\{e_1, \dots, e_n\}$ is the standard basis. Then $Ax = A(\sum_{k=1}^n x_k e_k) = \sum_{k=1}^n x_k A e_k = \sum_{k=1}^n x_k v_k \in$ $Span(\{v_1, \dots, v_n\})$. This shows $R(L_A) \subset Span(\{v_1, \dots, v_n\})$ and the other containment is also easy to see by reversing the above.

Corollary

The rank of a $m \times n$ -matrix $A = [v_1 \cdots v_n]$ is the maximum number of linearly independent columns in A.

Proof.

By the previous result, the columns of A, $\{v_1, \ldots, v_n\}$ generate $R(L_A)$. Hence we know that some subset if a basis for $R(L_A)$. Thus rank $(A) = \dim(R(L_A))$ is the maximum number of linearly independent vectors in $\{v_1, \ldots, v_n\}$. 1 That is enough for today.