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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 But first, are there any questions from last time?
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Review

Theorem

Let A ∈ Mm×n(F) and let P and Q be invertible m ×m- and
n × n-matrices, respectively. Then

rank(A) = rank(PA) = rank(AQ) = rank(PAQ).

Corollary

Elementary row and column operations preserve the rank of a
matrix.
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Rank

Example

Consider A =

 2 1 −1 0
1 2 1 3
1 1 0 1

. It is a worthwhile exercise to

see that we can use elementary row and column operations to

transform A to the matrix D =

 1 0 0 0
0 1 0 0
0 0 0 0

 and that D has

the “block” form D =

(
I2 O1

O2 O3

)
where the Ok are zero

matrices of the appropriate form. Of course, it is now abundantly
clear that rank(A) = 2.
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Rank Theorem

Theorem (Rank Theorem)

Let A be a m × n-matrix of rank r .

1 We have r = rank(A) ≤ min{m, n }.
2 We can transform A by finitely many elementary row and

column operations into a m × n-matrix

D =

(
Ir O1

O2 O3

)
(‡)

where Ir is the r × r identity matrix and O1, O2, and O3 are
zero matrices of the appropriate shape.

3 In fact there is a m ×m invertible matrix B and a n × n
invertible matrix C such that BAC = D where D is as in (‡)
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Proof

Proof.

We will start by proving item (2).

If A = O, the zero matrix, then r = 0 and we can just let D = A.

So we assume A 6= 0 and proceed by induction on m the number
of rows of A.

If m = 1, then since A is non-zero, we can use an elementary
column operation of type 2 to transform A to transform A to a
matrix with a nonzero entry in the (1, 1) position. Then we can
transform A to the matrix D = [1 0 · · · 0] using a type 2 operation
followed by multiple type 3 operations. This established the result
when m = 1.

Now we assume that the result is true for matrices with m ≥ 1
rows and consider a matrix A with m + 1 rows.
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Proof

Proof Continued.

Since A = (Aij) 6= O, some Aij 6= 0. Using type 1 operations we
can transform A to a matrix of the form

A′ =

(
∗ R
C B ′

)
where ∗ is a nonzero scalar, B ′ is a m × (n − 1) matrix, R is a
1× (n − 1) matrix, and C is a m × 1 matrix. Then we an multiply
the first row by a nonzero scalar so that the (1, 1)-entry is a 1.
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Proof

Proof Continued.

Then we can use type 3 operations to transform this matrix to one of the
form

A′′ =

(
1 O
O B ′′

)
and B ′′ is a m × (n − 1) matrix. It is an exercise to check that
rank(B ′′) = rank(A′′)− 1. But then
rank(A′′)− 1 = rank(A′)− 1 = rank(A)− 1 = r − 1.

Now by induction, we can transform B ′′ via elementary row and column
operations into

D ′ =

(
Ir−1 O4

O5 O6

)
.

Then we can perform the corresponding operations to A′′ to get

D =

 1 O O
O Ir−1 O4

O O5 O6

 =

(
Ir O1

O2 O3

)
.

This is exactly the matrix desired. This proves item (2).
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Proof

Proof Continued.

(1) Item (1) follows since rank(A) = rank(D) and we clearly have
r ≤ min{m, n } in D.

(3) Since D was obtained from A via a finite sequence of
elementary row operations and elementary column operations,
there are elementary matrices Ek and Dj such that

D = EpEp−1 · · ·E1AD1D2 · · ·Dq.

But each Ek and each Dj is invertible. Hence so are B = Ep · · ·E1

and C = D1 · · ·Dq
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Break Time

Ok, that was a big result. We get to the pay off soon, but first a
break and time for questions.
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More Words

Definition

Let A be a m × n matrix with columns v1, . . . , vn ∈ Fm and rows
r1, . . . , rm ∈ Fn. Then we call Col(A) = Span

(
{ v1, . . . , vn }

)
the

Column space of A and Row(A) =
(
{ r1, . . . , rm }

)
the Row space

of A.

Remark

We saw last time that Col(A) = R(LA). Keep in mind that
Col(A) ⊂ Rm and Row(A) ⊂ Rn. Then dim(Col(A)) is the
maximal number of linearly independent columns in A and
dim(Row(A)) is the maximal number of linearly independent rows
in A.
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The Payoff

Corollary

Let A be a m × n-matrix.

1 rank(At) = rank(A).

2 dim(Row(A)) = rank(A) = dim(Col(A)).

Remark

Keep in mind that while dim(Row(A)) = dim(Col(A)) they
potentially live in different vector spaces: one in Fn and one in Fm.
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Proof

Proof.

Using the Rank Theorem, we have D = BAC where D =
(
Ir O
O O

)
where r = rank(A) and both B and C are invertible. It is clear that
Dt is of the same form but with different sized zero blocks. Hence
rank(Dt) = r . But Dt = C tAtBt . Since C t and Bt are also
invertible, rank(At) = rank(C tDtBt) = rank(Dt) = r . This proves
item (1).

(2) Note that Row(A) = Col(At) and
rank(At) = dim(Col(At)) = dim(R(LAt )). Since
rank(At) = rank(A) by item (1), the assertion is proved.

Remark

I kind of like this result. For example, if I have a 3× 15-matrix
then of its 15 column vectors, at most 3 are linearly independent!
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Invertible Matrices Again

Corollary

A n × n matrix is invertible if and only if it is the product of elementary
matrices.

Proof.

Clearly the product of elementary matrices is invertible because the
product of invertible matrices is invertible.

Suppose that A is invertible. Then rank(A) = n. Therefore it follows from
the rank theorem that we can transform A into D = In via a sequence of
elementary row and column operations. Hence there are elementary
matrices Ek and Dj such that

Ep · · ·E1︸ ︷︷ ︸
B

AD1 · · ·Dq︸ ︷︷ ︸
C

= In.

Therefore

A = B−1InC
−1 = B−1C−1 = E−11 · · ·E

−1
p D−1q · · ·D−11 ,

and we know that the inverse of an elementary matrix is elementary.
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Ranks of Products

Theorem

Suppose that T : V →W and S : W → Z are linear
transformations between finite-dimensional vector spaces. Suppose
also that A and B are matrices so that AB is defined.

1 rank(ST ) ≤ rank(S).

2 rank(ST ) ≤ rank(T ).

3 rank(AB) ≤ rank(A).

4 rank(AB) ≤ rank(B).
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Proof

Proof.

(1) We have

R(ST ) = ST (V ) = S(T (V )) ⊂ S(W ) = R(S).

Hence rank(ST ) ≤ rank(S).

(3) Here we an use item (1) to see that

rank(AB) = rank(LAB) ≤ rank(LA) = rank(A).

This proves item (3).
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Proof

Proof.

(4) We can apply item (3) to see that

rank(AB) = rank((AB)t) = rank(BtAt) ≤ rank(Bt) = rank(B).

This proves item (4).

(2) Let α, β, and γ be bases for V , W , and Z , respectively. Let

A′ = [S ]γβ and B = [T ]βα. Then A′B ′ = [ST ]γα. Now can use
item (4) to see that

rank(ST ) = rank([ST ]γα) = rank(A′B ′) ≤ rank(B ′) = rank(T ).

This completes the proof.
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Break Time

Time for a well-deserved break and some questions.

Dana P. Williams Math 24: Winter 2021 Lecture 13



Augmented Matrices

Definition

Let A be a m × n-matrix and B a m × p-matrix, then the
augmented matrix (A | B) is the m × (n + p)-matrix [A B] whose
first n columns are the columns of A and the last p columns the
columns of B.

Example

Let A =
(
a b c
d e f

)
and B =

(
x y
z w

)
. Then (A | B) =

(
a b c x y
d e f z w

)
.

Sometimes we “keep the bar” to remind us what we added on:
(A | B) =

(
a b c
d e f

∣∣ x y
z w

)
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Finding Inverses

Theorem

Let A be a n × n matrix. Then A is invertible if and only if we can
use elementary row operations to transform the augmented matrix
(A | In) to a matrix of the form (In | B). In that case, B = A−1.
On the other hand, if we can use elementary row operations to
transform (A | In) into a matrix of the form (C | D) with
rank(C ) < n, then A is not invertible.

Return1 Return3

Remark

Keep in mind that only elementary row operations are allowed here.
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Examples First

Example

Before diving into the proof, let’s consider the theorem’s practical
aspects with a few examples. Consider

A =

 1 1 2
1 1 0
2 1 2

 and B =

 1 1 1
2 −1 3
3 0 4

 .

What can we say about the inverses of these matrices?

Solution

As we saw on the document camera, A−1 =

 −1 0 1
1 1 −1
1
2 −1

2 0

.

But B is not invertible since rank(B) = 2 < 3.
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Proof

Before giving the proof of the theorem, we need a little observation.

Lemma

If (A | B) is an augmented m × (n + p)-matrix and C is a
r ×m-matrix, then C (A | B) = (CA | CB).

Proof of the Lemma.

Suppose that the columns of A are v1, . . . , vn and the columns of
B are w1, . . . ,wp. Then (A | B) = [v1 · · · vn w1 · · · wp]. Then we
proved that
C [[v1 · · · vn w1 · · · wp] = [Cv1 · · · Cvn Cw1 · · · Cwp]. But the
same observation implies this is equal to (CA | CB).
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Proof

Proof of the Theorem.

Suppose that we can transform (A | In) into (In | B) via a finite
sequence of elementary row operations. Then there are elementary
matrices E1,. . . ,Em such that

EmEm−1 · · ·E1︸ ︷︷ ︸
C

(A | In) = (In | B)

Then the Lemma implies (CA | C ) = (In | B). Therefore B = C
and CA = In. The latter implies that A is invertible with
A−1 = C = B. This proves half of the first assertion and the
second assertion Go .
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Proof

Proof Continued.

Now suppose that A is invertible. Then we know that A is the
product D1D2 · · ·Dm of elementary matrices Dk . But then

D−1m · · ·D−11 (A | In) = D−1m · · ·D−11 (D1D2 · · ·Dm | In)

= D−1m · · ·D−12 (D2 · · ·Dm|D−11 )

...

(In | D−1m · · ·D−11 ).

This says precisely that we can transform (A | In) into the form
(In | B) via elementary row operations. This proves the remaining
half of the first assertion. Go

Dana P. Williams Math 24: Winter 2021 Lecture 13



Proof

Proof Continued.

If we preform elementary row operations on (A | B) via elementary
row operations corresponding to the elementary matrices
E1,. . . ,Em, then we get an augmented matrix

(C | D) = (UA | UB)

where U = En · · ·E1. Since U is invertible,
rank(A) = rank(UA) = rank(C ). Hence if rank(C ) < n, then
rank(A) < n and A is not invertible.
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Enough

1 That is enough for today.
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