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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 But first, are there any questions from last time?
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Review

Theorem

Suppose that Ax = b is a consistent nonhomogeneous system with
solution set K. Let KH be the solution set to the corresponding
homogeneous system Ax = 0. Then for any s ∈ K ,

K = {s}+ KH = { s + h : h ∈ KH }.

Theorem

Let Ax = b be a system of n equations in n unknowns. If A is
invertible, then the system has a unique solution—namely, A−1b.
Conversely, if the system Ax = b has a unique solution, then A is
invertible.

Theorem

The system Ax = b is consistent if and only if
rank(A) = rank(A | b).
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Solving Systems of Equations

1 Until now we have treated actually solving a system of linear
equations in a ad hoc basis letting you more of less figure it
out on you own.

2 Section 3.4 is concerned with systematically solving systems
of equations.

3 The goal is not just to solve the system, but do it in a way
that allows us to describe the solution set with a minimal
number of linearly independent vectors.

4 I only want to spend a lecture on this, so we may cut a corner
or two by sketching some proofs and even just stating a result
or two.
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Equivalent Systems

Definitions

Two systems of linear equations in n unknowns are said to be
equivalent if they have the same solution set.

Theorem

Let Ax = b be a system of m equations in n unknowns. (This
means A is a m × n-matrix!) If C is an invertible m ×m matrix,
then Ax = b is equivalent to (CA)x = Cb.

Proof.

Let K be the solution set for Ax = b and K′ the solution set for
(CA)x = Cb. If s ∈ K, then As = b. But then
(CA)s = C (As) = Cb, so s ∈ K′. On the other hand, if s ′ ∈ K′,
then (CA)s ′ = Cb. But then As ′ = C−1(CA)s ′ = C−1(Cb) = b
and As ′ = b. That is s ′ ∈ K. Therefore K = K′ and the systems
are equivalent.
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Elementary Row Operations

Corollary

Let Ax = b be a system of m equations in n unknowns. If (A′ | b′)
is obtained from (A | b) by a sequence of elementary row
operations, then A′x = b′ is equivalent to Ax = b.

Proof.

If (A′ | b′) is obtained from (A | b) by a sequence of elementary
row operations, then there are m ×m-elementary matrices Ek such
that (A′ | b′) = Ep · · ·E1(A | b). Let C = Ep · · ·E1. Then C is
invertible and (A′ | b′) = (CA | Cb). Thus A′x = b′ is the system
(CA)x = Cb and A′x = b′ is equivalent to Ax = b.
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An Example

Consider the system

x1 + 2x2 + x3 − x4 + 3x5 = 2

x1 + x2 + x3 − 3x5 = 3

3x1 + 2x2 + 3x3 − 2x4 = 1.

Then form the augmented matrix (A | b) for Ax = b. 1 2 1 −1 3 2
1 1 1 0 −3 3
3 2 3 −2 0 1


Now we mimic what we were told to do in §1.4! We want a
leading coefficient of 1 in each row with all zeros below it.
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Step One

Then we get  1 2 1 −1 3 2
0 1 0 −1 6 −1
0 0 0 1 −5 3


Now we use the leading 1’s to zero out the rest of their column to
get (A′ | b′):  1 0 1 0 −4 1

0 1 0 0 1 2
0 0 0 1 −5 3

 .

Thus our new equivalent system is

x1 + x3 − 4x5 = 1

x2 + x5 = 2

x4 − 5x5 = 3.
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Free Variables

I suggest re-writing this as

x1 = 1− x3 + 4x5

x2 = 2− x5

x4 = 3 + 5x5.

Now it is clear we are free to pick x3 and x5 as we please. I like to say that
x3 and x5 are “free variables”. Hence if x3 = t and x5 = s, then we have

x1
x2
x3
x4
x5

 =


1− t + 4s

2− s
t

3 + 5s
s

 =


1
2
0
3
0


︸ ︷︷ ︸

s0

+t


−1

0
1
0
0


︸ ︷︷ ︸

u1

+s


4
−1

0
5
1


︸ ︷︷ ︸

u2

.

Therefore K = { s0 }+ KH where KH = Span
(
{ u1, u2 }

)
and KH is the

solution set for the associated homogeneous equation Ax = 0.
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Echelon and Reduced Echelon Form

Definition

A m × n matrix is said to be in row echelon form if

1 Any row containing a nonzero entry lies above any row of all
zeros.

2 The first nonzero entry in any row—called a leading entry—is
a 1 and all the entries below it in its column are zero.

3 The leading entry in any row occurs the right of any leading
entry in any row above it.

If in addition each leading entry is the only nonzero entry in its
column, then we say the matrix is in reduced row echelon form.
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Break Time

Time for a break and questions.
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Gaussian Elimination

Remark (Gaussian Elimination)

It is a theorem that every matrix can be put into reduced row echelon
form using elementary row operations just as we did in our example.
There are more details in the text, but we basically proceed as follows.

1 Forward Pass: We move a nonzero entry to the top of the first
nonzero column, scale that entry to a 1 and zero out the entries
below. Then we continue row by row until the matrix is in row
echelon form.

2 Backward Pass: Moving left from the right-most leading entry we
zero out the remaining entries in the column above each leading
entry. The matrix is now in reduced row echelon form.

3 This process is called Gaussian Elimination.

Remark

It turns out that the reduced row echelon form of a matrix is unique.
However, a matrix can have many echelon forms.
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The General Solution

1 Starting with a system Ax = b, we form the augmented
matrix (A | b) and transform it to reduced row echelon form
(A′ | b′) via Gaussian elimination.

2 Since (A′ | b′) is in reduced row echelon form, the non-zero
rows are clearly linearly independent and the rank(A′ | b′) is
the number r of nonzero rows.

3 Furthermore rank(A′) = rank(A′ | b′) if and only if there is no
leading entry in the last column in which case
rank(A) = rank(A′) = r .

4 When solving the new system A′x = b′, we can ignore the
zero rows. Furthermore, the variables corresponding to the r
leading entries can be expressed in terms of the remaining
n − r variables (free variables) and we get a general solution
of the form

s = s0 + t1u1 + · · ·+ tn−run−r

where t1, . . . , tn−r ∈ R.
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Summary

Theorem

Suppose that Ax = b is a system of r nonzero equations such that (A | b)
is in reduced row echelon form. Suppose the system is consistent so that
rank(A | b) = rank(A). Then

1 rank(A) = r , and
2 If s = s0 + t1u1 + · · ·+ tn−run−r is the general solution as above,

then { u1, . . . , un−r } is a basis for the solution set KH for the
corresponding homogeneous system Ax = 0.

Proof.

The previous discussion shows that rank(A) = r in this case. Let K be the
set of solutions to Ax = b and KH the solutions to the homogeneous
system Ax = 0. Clearly, s0 ∈ K. But then
KH = {−s0}+ K = Span

(
{ u1, . . . , un−r }

)
. Since rank(A) = r ,

dim(KH) = n − r . Since { u1, . . . , un−r } is a spanning set with n − r
elements, they must be linearly independent and therefore a basis.
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Break Time

Time for a break and some questions.
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The Glories of Reduced Row Echelon Form

Theorem

Let A = [a1 · · · an] be a m × n nonzero matrix with columns ak
and let B = [b1 · · · bn] be the the reduced row echelon form of A
with columns bk . Let r ≥ 1 be the number of nonzero rows in B
and { e1, . . . , em } the standard ordered basis for Fm.

1 rank(A) = r .

2 For 1 ≤ j ≤ r , there is a column bji of B such that bji = ei .

3 Then { aj1 , . . . , ajr } is a basis for Col(A) = R(LA).

4 The nonzero rows of B form a basis for Row(A) in Fn.
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First An Example

Example

Before diving into the proof, let’s try to see what the theorem says and

how to use it. Let A = [a1 a2 a3 a4 a5] =


2 4 6 2 4
1 2 3 1 1
2 4 8 0 0
3 6 7 5 9

. You can

check that the reduced row echelon form of A is

B =


1 2 0 4 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0

. Now the theorem implies that rank(A) = 3

and that { a1, a3, a5 } is a basis for Col(A) = R(LA) in R4. Note that the
first, third, and fifth columns of B are not necessarily in Col(A) let alone a
basis. In this case, (1, 0, 0, 0) is not in R(LA)! (You should check this.)
Also we see that { (1, 2, 0, 4, 0), (0, 0, 1,−1, 0), (0, 0, 0, 0, 1) } is a basis for
Row(A) in R5.

Dana P. Williams Math 24: Winter 2021 Lecture 15



Now the Proof

Proof.

Let A = [a1 · · · an] be a m × n matrix with columns ak and let
B = [b1 · · · bn] be the the reduced row echelon form of A with
columns bk . Because B is in reduced row echelon form, its nonzero
rows must be linearly independent. Since rank(A) = rank(B),
r = rank(A) is the number of nonzero rows in B. This proves
item (1).

Since r ≥ 1, the the standard basis vectors e1, . . . , er in Fm are
among the columns of B. Let bji = ei . This proves item (2).

Since rank(A) = r = dim
(
Col(A)

)
, to prove item (3), it suffices to

see that { aj1 , . . . , ajr } is linearly independent. So we suppose

d1aj1 + · · ·+ drajr = 0.

We need to see that dk = 0 for all k .
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Proof

Proof Continued.

Since we obtained B from A via a sequence or elementary row operations,
there is an invertible matrix M such that MA = B. Since we know that
matrix multiplication works “column by column”, we have Maji = ei .
Therefore

0 = M0 = M(d1aj1 + · · ·+ drajr )

= d1Maj1 + · · · drMajr = d1e1 + · · ·+ drer .

Since { e1, . . . , er } are linearly independent in Fm, we must have all the
dk = 0 as required.

(4) If we obtain A′ from A via an elementary row operation, then it is not
so hard to check that Row(A) = Row(A′). This very easy for a type 1 or
type 2 operation and just a bit more work for a type 3. I leave it to you to
check this. Since B is obtained from A via a finite sequence of elementary
row operations, we have Row(A) = Row(B). But the nonzero rows of B
clearly span Row(B) and are linearly independent. This proves
item (4).
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Example

Example

Clearly β = { (1,−1, 1,−1), (2, 1,−1, 1) } is linearly independent in R4. In
theory, we should be able to extend β to a basis of R4. How?

Solution

Let A =


1 2 1 0 0 0
−1 1 0 1 0 0

1 −1 0 0 1 0
−1 1 0 0 0 1

. Clearly, rank(A) = 4. If we put A

into reduced row echelon form, then we get

U =


1 0 1

3 0 0 −2
3

0 1 1
3 0 0 1

3
0 0 0 1 0 −1
0 0 0 0 1 1

. Therefore the first, second, fourth, and

fifth columns of A for a basis for R4. Thus one such basis is
γ = { (1,−1, 1,−1), (2, 1,−1, 1), (0, 1, 0, 0), (0, 0, 1, 0) }.
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Enough

1 That is enough for today.
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