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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 Our Midterm will be available Thursday after office hours and
must be turned in by Saturday, February 20th, at 10pm. No
exceptions. It will cover through today’s lecture and hence all
of §4.3 in the text.

4 This time you will have 3.5 hours with 30 minutes uploading
time. You should plan ahead and block out a time to take the
exam now.

5 But first, are there any questions from last time?
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The Determinant for n × n-Matrices

Definition

If A = (a) is a 1× 1-matrix, we let det(A) = a. If A = (Aij) is a
n × n-matrix with n ≥ 2, then we define

det(A) =
n∑

j=1

(−1)1+jA1j det(Ã1j).

Theorem

The function det : Mn×n(F)→ F is a linear function of each of its
rows when the other rows are held fixed.

Theorem

If A is a n × n-matrix, then we can compute det(A) be expanding
along any row; that is, for all 1 ≤ i ≤ n,

det(A) =
n∑

j=1

(−1)i+jAij det(Ãij)
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Properties of the Determinant

Proposition

If A ∈ Mn×n(F) has two identical rows, then det(A) = 0.

Proof.

This is easy to check if n = 2. We proceed by induction and
assume the result for (n − 1)× (n − 1)-matrices with n ≥ 3.
Suppose A is a n × n-matrix whose r th and sth rows are identical.
Since n ≥ 3, we can pick a row, say the i th-row, with i not equal
to r or s. Then by our last theorem,

det(A) =
n∑

j=1

(−1)i+jAij det(Ãij).

But now each Ãij has two identical rows. Then by our induction

hypothesis, det(Ãij) = 0 for all j and det(A) = 0. This completes
the proof.
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Determinants and Elementary Row Operations

Proposition (Type 1 row operations)

Suppose A ∈ Mn×n(F) and that B is obtained from A by
interchanging two rows. Then det(B) = − det(A).

Proof.

Let r1, . . . , rn be the rows of A and that B is obtained from A by
interchanging rows i and k with i < k.

Thus A =



...
ri
...
rk
...


and B =



...
rk
...
ri
...


.
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Proof

Proof Continued.

But since the determinant is linear in each row, we can use the
previous proposition to conclude that

0 = det



...
ri + rk

...
ri + rk

...


= det



...
ri
...

ri + rk
...


+ det



...
rk
...

ri + rk
...



= det



...
ri
...
ri
...


+ det



...
ri
...
rk
...


+ det



...
rk
...
ri
...


+ det



...
rk
...
rk
...


= 0 + det(A) + det(B) + 0.

Hence det(B) = − det(A) as claimed.
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Type 3 Elemenary Row Operations

Proposition (Type 3 Row Operations)

Suppose A ∈ Mn×n(F) and B is obtained from A by adding a
multiple of one row to another row. Then det(B) = det(A).

Proof.

Let r1, . . . , rn be the rows of A and let A(u) be the matrix with
rows r1, . . . , rk−1, u, rk+1, . . . , rn. Then u 7→ det(A(u)) is linear
from Fn to F. Suppose B = A(rk + cri ) with i 6= k . Then

det(B) = det(A(rk + cri )) = det(A(rk)) + c det(A(ri )). (‡)

But A(rk) = A and A(ri ) has two identical rows. Hence (‡) implies
det(B) = det(A) as claimed.
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Example

Example

Show that det(C ) = 10 where C =


2 0 4 2
1 1 0 1
0 2 2 1
1 1 1 2

.

Solution

Well, there is no good row to expand along that doesn’t involve at
least three 3× 3-determinants. But it is not so hard to use just
type 3 elementary row operations to transform C into

B =


2 0 4 2
0 1 −2 0
0 0 6 1
0 0 0 5

6

. Since det(C ) = det(B), we just have to

compute det(B). But this is easy! Expand along the bottom rows
to get

det(B) =
5

6
det

 2 0 4
0 1 −2
0 0 6

 =
(5

6

)
· 6 · det

(
2 0
0 1

)
= 10.
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General Procedure

Remark

In general, we can transform any n × n-matrix A into an
upper-triangular matrix B using only type 1 and type 3 elementary
row operations. Then det(A) = (−1)r det(B) where r is the
number of type 1 operations used. It is a homework exercise to
realize that det(B) is just the product of its diagonal entries.
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Break Time

Let’s take a break and see if there are any questions.
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Summary

Theorem

Suppose that A ∈ Mn×n(F).

1 If B is obtained from A by a type 1 elementary row operation
(interchanging two rows), then det(B) = − det(A).

2 If B is obtained from A by a type 2 elementary row operation,
say multiplying a row by the scalar c , then det(B) = c det(A).

3 If B is obtained from A by a type 3 elementary row operation
(adding a multiple of one row to another row), then
det(B) = det(A).

Proof.

We proved item (1) and (3) prior to the break. Item (2) is
immediate as the determinate is a linear function of each row.
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Elementary Matrices

Corollary

Suppose that E is an elementary n × n-matrix.

1 If E is type 1, then det(E ) = −1.

2 If E is type 2, then det(E ) = c where c is the nonzero scalar
used to create E .

3 If E is type 3, then det(E ) = 1.

In all cases, det(E ) 6= 0.

Proof.

The matrix E is obtained from In by performing the corresponding
elementary row operation and det(In) = 1.
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Invertible Matrices

Corollary

If A ∈ Mn×n(F) is not invertible, then det(A) = 0.

Proof.

Note that if B is obtained from A by an elementary row operation
and if det(A) = 0, then det(B) = 0. Since elementary row
operations are reversible, we have det(A) = 0 if and only if
det(B) = 0.

If A is not invertible, then rank(A) < n. Thus if B is the reduced
row echelon form of A, then rank(B) = rank(A) < n and B has at
least one row of all zeros. Thus det(B) = 0. But since B is
obtained from A by a sequence of elementary row operations, this
implies det(A) = 0.
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An Amazing Result

Theorem

Suppose that A and B are n × n-matrices. Then

det(AB) = det(A) det(B).

Proof.

We start by assuming that A is an elementary matrix. Suppose
that A is type 1. Then C = AB is the matrix obtained from B by
interchanging two rows. Hence

det(AB) = − det(B) = (−1) det(B) = det(A) det(B).

A similar argument applies with A is type 2 or type 3.

If A is not invertible, then det(A) = 0 and rank(A) < n. But then
rank(AB) ≤ rank(A) < n and det(AB) = 0. Again,

det(AB) = 0 = 0 · det(B) = det(A) det(B).
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Proof

Proof Continued.

If A is invertible, then we know that A = Em · · ·E1 is a product of
elementary matrices. Then, using the first part of the proof,

det(AB) = det(Em · · ·E1B)

= det(Em) det(Em−1 · · ·E1B)

...

= det(Em) · · · det(E1) det(B)

= det(Em · · ·E1) det(B)

= det(A) det(B).

So det(AB) = det(A) det(B) in all cases.
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Invertible Matrices

Corollary

A n × n-matrix A is invertible if and only if det(A) 6= 0. In that
case, det(A−1) = 1

det(A) = det(A)−1.

Proof.

We already saw that if A is not invertible, then det(A) = 0. But if
A is invertible, then

1 = det(In) = det(AA−1) = det(A) det(A−1).

Hence det(A) 6= 0 and det(A−1) = det(A)−1.
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Break Time

Time for a break and some questions.
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The Transpose of an Elementary Matrix

Lemma

If E is a n × n-elementary matrix, then E t is an elementary matrix
of the same type. In particular, det(E ) = det(E t).

Sketch of the Proof.

If E is type 1 or type 2, then it is easy to check that E is
symmetric; that is, E t = E . If E is type three, say E adds c times
row i to row j , then you can check that E t adds c time row j to
row i . In particular, E t is type three and
det(E t) = 1 = det(E ).
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The Determinant of the Transpose

Theorem

If A ∈ Mn×n(F), then det(At) = det(A).

Proof.

If A is invertible, then A−1A = In. But then At(A−1)t = I tn = In.
Hence At is invertible and (At)−1 = (A−1)t . Since (At)t = A, we
see that A is invertible if and only if At is. Thus if A is not
invertible then det(A) = 0 = det(At).

But if A is invertible, then A = Em · · ·E1 is a product of
elementary matrices. Then At = E t

1 · · ·E t
m. Thus

det(A) = det(Em) · · · det(E1) = det(E t
m) · · · det(E t

1)

= det(E t
1) · · · det(E t

m) = det(E t
1 · · ·E t

m)

= det(At).
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Columns Become Rows

Theorem

Suppose that A = (Aij) ∈ Mn×n(F). Then for all 1 ≤ i ≤ n and
1 ≤ j ≤ n, we have

det(A) =
n∑

j=1

(−1)i+jAij det(Ãij) and

det(A) =
n∑

i=1

(−1)i+jAij det(Ãij).

Proof.

The first equation if just our bit theorem from last time that we
can expand along any row. The second equation is just applying
the first to det(At).
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Column Operations

Theorem

Let A ∈ Mn×n(F).

1 If B is obtained from A by interchanging two columns of A,
then det(B) = − det(A).

2 If B is obtained from A by multiplying one column by the
scalar c, then det(B) = c det(A).

3 If B is obtained from A by adding a multiple of one column to
another column, then det(B) = det(A).

Proof.

Apply row operations to At . For example, if B is obtained from A
by interchanging two columns, then Bt is obtained from At by
interchanging two rows. Thus
det(B) = det(Bt) = − det(At) = − det(A).
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Linear in Each Column

Corollary

The function det : Mn×n(F)→ F is linear in each column if the
other columns are held fixed.
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An Example

Example

Recall that M ∈ Mn×n(F) is called skew-symmetric if Mt = −M.
For example, M =

(
0 −1
1 0

)
. Note that

det(M) = det(Mt) = det(−M) = (−1)n det(M). Thus if n is odd,
and F does not have characteristic 2, then det(M) = 0 and M is
not invertible.
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Enough

1 That is enough for today.
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