Math 24: Winter 2021 Lecture 18

Dana P. Williams

Dartmouth College

Wednesday, February 17, 2021

- We should be recording.
- Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
- Our Midterm will be available Thursday after office hours and must be turned in by Saturday, February 20th, at 10pm. No exceptions. It will cover through §4.3 in the text.
- This time you will have 3.5 hours with 30 minutes uploading time. You should plan ahead and block out a time to take the exam now.
- **(3)** But first, are there any questions from last time?

Definition

A linear operator T on a finite-dimensional vector space V is said to be diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Remark

Suppose that $\beta = \{v_1, \dots, v_n\}$ is an ordered basis such that $[T]_{\beta} = [[T(v_1)]_{\beta} \cdots [T(v_n)]_{\beta}]$ is diagonal. That is,

$$\left[[T(v_1)]_{\beta} \cdots [T(v_n)]_{\beta} \right] = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Then for each $1 \le k \le n$, $[T(v_k)]_{\beta} = \lambda_k e_k$ where $\{e_1, \ldots, e_n\}$ is the standard ordered basis for \mathbf{F}^n . That means $T(v_k) = \lambda_k v_k$ for all k.

Conversely, if $\beta = \{v_1, \ldots, v_n\}$ is an ordered basis for V such that $T(v_k) = \lambda_k v_k$ for all k, then $[T]_\beta$ is diagonal just as above.

Definition

Suppose that T is a linear operator on a vector space V. Then a nonzero vector $v \in V$ is called an eigenvector for T if there is a scalar $\lambda \in \mathbf{F}$ such that $T(v) = \lambda v$. We call λ the eigenvalue corresponding the the eigenvector v.

If $A \in M_{n \times n}(\mathbf{F})$, then we call a nonzero $v \in \mathbf{F}^n$ an eigenvector for A if it is an eigenvector for L_A so that $Av = \lambda v$ for some scalar λ . Again, we call λ the eigenvalue corresponding to the eigenvector v. We can summarize the previous discussion in a useful theorem.

Theorem

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there is an ordered basis for V consisting of eigenvectors for T. If $\beta = \{v_1, \ldots, v_n\}$ is an ordered basis of eigenvectors for T, then $[T]_{\beta}$ is the diagonal matrix $D = (D_{ij})$ where

$$D_{ij} = \begin{cases} \lambda_i & \text{if } i = j, \text{ and} \\ 0 & \text{if } i \neq j \end{cases}$$

where λ_i is the eigenvalue corresponding to the eigenvector v_i .

Matrices

Corollary

A matrix $A \in M_{n \times n}(\mathbf{F})$ is diagonalizable if and only if there is an ordered basis of \mathbf{F}^n consisting of eigenvectors for A. If $\beta = \{v_1, \ldots, v_n\}$ is an ordered basis of eigenvectors for A and if $Q = [v_1 \cdots v_n]$ is the $n \times n$ -matrix whose j^{th} -column is v_j , then $D = Q^{-1}AQ$ is a diagonal matrix such that D_{ii} is the eigenvalue corresponding to v_i . In particular, A is diagonalizable if and only if it is similar to a diagonal matrix.

Proof.

The first statement follows from the previous theorem applied to $T = L_A$. If $\beta = \{v_1, \ldots, v_n\}$ is a basis of eigenvectors such that $Av_i = D_{ii}v_i$, then $[L_A]_{\beta} = D$ as in the statement of the corollary. But $Q = [I]_{\beta}^{\sigma}$ where σ is the standard ordered basis, and

$$D = [L_A]_{\beta} = [I]^{\beta}_{\sigma} [L_A]^{\sigma}_{\sigma} [I]^{\sigma}_{\beta} = Q^{-1} A Q.$$

Proof Continued.

Conversely, if Q is invertible and $D = Q^{-1}AQ$ is diagonal, then the columns of Q, say $\{v_1, \ldots, v_n\}$, are an ordered basis for \mathbf{F}^n and $Q = [I]^{\sigma}_{\beta}$. Furthermore,

$$[L_A]^{\beta}_{\beta} = [I]^{\beta}_{\sigma}[L_A]^{\sigma}_{\sigma}[I]^{\sigma}_{\beta} = Q^{-1}AQ = D.$$

Thus $L_A(v_i) = Av_i = D_{ii}v_i$ and β is a basis of eigenvectors for A.

Examples of Eigenvectors

Example

Let
$$A = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix}$$
, $v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, and $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Then

$$L_{\mathcal{A}}(v_1) = \mathcal{A}v_1 = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 2v_1$$

and

$$L_A(v_2) = Av_2 = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -3 \end{pmatrix} = -3v_2.$$

Since $\beta = \{v_1, v_2\}$ is an (ordered) basis, both L_A and A are diagonalizable. Furthermore, if $Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{bmatrix} I \end{bmatrix}_{\beta}^{\sigma}$, then

$$Q^{-1}AQ = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} = [L_A]_\beta.$$

Example

Let $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Note that $A^2 = O$. If A—or equivalently L_A —were diagonalizable, then there would be a diagonal matrix D such that $D = Q^{-1}AQ$. But then $D^2 = (Q^{-1}AQ)(Q^{-1}AQ) = Q^{-1}A^2Q = O$. But if $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, then $D^2 = \begin{pmatrix} \lambda_1^2 & 0 \\ 0 & \lambda_2^2 \end{pmatrix}$. So $D^2 = O$ implies D = O. But then $A = QDQ^{-1}$ would be the zero matrix! So A is not diagonalizable.

Rotations

Example

Let $T_{\theta} : \mathbf{R}^2 \to \mathbf{R}^2$ be rotation by θ radians about the origin. Then as in Example 2 in §2.1, $T_{\theta} = L_{A_{\theta}}$ where $A_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$. Now if $0 < \theta < \pi$, then it is clear from geometric considerations that T_{θ} has no eigenvectors! (Pictures are key here.)

Example

The previous example shows that $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ has no eigenvectors over $\mathbf{F} = \mathbf{R}$. (Here $\theta = \frac{\pi}{2}$ and remember that $T_{\frac{\pi}{2}}$ is a linear operator on the real-vector space \mathbf{R}^2 .) But we could consider $A \in M_{2 \times 2}(\mathbf{C})$. Then $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} i \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ i \end{pmatrix} = i\begin{pmatrix} i \\ 1 \end{pmatrix}$ and $v = \begin{pmatrix} i \\ 1 \end{pmatrix}$ is an eigenvector with eigenvalue *i*. Similarly, $\begin{pmatrix} -i \\ 1 \end{pmatrix}$ is an eigenvector with eigenvalue -i and over the complex numbers *A* is diagonalizable with $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = Q^{-1}AQ$ with $Q = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}$. Fortunately, we are going to be working mostly over the reals. But we will need to think about the complex case from time to time.

Example

Now let $V = C^{\infty}(\mathbf{R})$ the subspace of the real-vector space $\mathscr{F}(\mathbf{R}, \mathbf{R})$ of functions from \mathbf{R} to \mathbf{R} which have derivatives of all orders at every point. Define a linear operator \mathcal{T} on $C^{\infty}(\mathbf{R})$ by $\mathcal{T}(f) = f'$. What are the eigenvectors and eigenvalues of \mathcal{T} ?

Solution

If f is an eigenvector, then $f' = \lambda f$ for some $\lambda \in \mathbf{R}$. But then we are supposed to know from back in the day that this happens if and only if $f(x) = Ce^{\lambda x}$ for some constant $C \in \mathbf{R}$ such that $C \neq 0$. (Remember that eigenvector cannot be equal to 0_V !) Therefore every $\lambda \in \mathbf{R}$ is an eigenvalue for T and the eigenvectors with eigenvalue λ , or eigenfunctions if you like, are multiplies of $f(x) = e^{\lambda x}$. (Thus the nonzero constant functions are the eigenfunctions for $\lambda = 0$.) Time for a break and some questions.

Theorem

Suppose that $A \in M_{n \times n}(\mathbf{F})$. Then $\lambda \in \mathbf{F}$ is an eigenvalue for A if and only if $\det(A - \lambda I_n) = 0$.

Proof.

Suppose that λ is an eigenvalue for A. Then there is a nonzero vector $v \in \mathbf{F}^n$ such that $Av = \lambda v$, or equivalently, $(A - \lambda I_n)v = 0$. Since $v \neq 0_V$, this implies that $A - \lambda I_n$ is not invertible and hence $\det(A - \lambda I_n) = 0$. Conversely if $\det(A - \lambda I_n) = 0$, then $A - \lambda I_n$ is not invertible and there is a nontrivial solution v to $(A - \lambda I_n)x = 0$ and then v is an eigenvector with eigenvalue λ .

Example

Let $A = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix}$. Then $\det(A - \lambda I_2) = \det\begin{pmatrix} 7-\lambda & -10 \\ 5 & -8-\lambda \end{pmatrix} = (\lambda - 7)(\lambda + 8) + 50 = \lambda^2 + \lambda - 6 = (\lambda + 3)(\lambda - 2)$. It follows that the only eigenvalues of A are just $\lambda = -3$ and $\lambda = 2$. Of course, this was the example we looked at earlier.

An Observation

Proposition

Suppose $A \in M_{n \times n}(\mathbf{F})$. Then $p(\lambda) = \det(A - \lambda I_n)$ is a polynomial in $P_n(\mathbf{F})$ of the form

$$p(\lambda) = (-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0.$$

In particular, p has degree n and leading coefficient $(-1)^n$.

For the proof, we need a little lemma.

Lemma

Let $A(\lambda)$ be a $n \times n$ matrix with entries $A_{ij}(\lambda) \in P_1(\mathbf{F})$. Then $q(\lambda) = \det(A(\lambda)) \in P_n(\mathbf{F})$.

Proof.

This is clear if n = 1, so let $n \ge 2$ and assume the result for $(n-1) \times (n-1)$ -matrices. Then

$$\det(A(\lambda)) = \sum_{j=1}^{n} (-1)^{1+j} A_{1j}(\lambda) \det(\widetilde{(A(\lambda)_{1j})}.$$

The result follows since $det(\widetilde{(A(\lambda))}_{1j}) \in P_{n-1}(\mathbf{F})$ by assumption.

Proof of the Proposition

The proposition is easy to check if $n \le 2$. So assume $n \ge 3$ and that the result is true for $(n-1) \times (n-1)$ -matrices. Then

$$\begin{split} p(\lambda) &= \det(A - \lambda I_n) \\ &= (A_{11} - \lambda) \det(\widetilde{A}_{11} - \lambda I_{n-1}) + \sum_{j=2}^n (-1)^{1+j} A_{1j} \det(\widetilde{(A - \lambda I_n)}_{1j}) \end{split}$$

which, by the induction hypotheses, is

$$= (A_{11} - \lambda) ((-1)^{n-1} \lambda^{n-1} + \dots + b_0) + \sum_{j=2}^n (-1)^{1+j} A_{1j} \det ((\widetilde{A - \lambda I_n})_{1j})$$

$$= (-1)^n \lambda^n + p_0(\lambda) + \sum_{j=2}^n p_j(\lambda)$$

where $p_0 \in P_{n-1}(\mathbf{F})$. Since each $p_j \in P_{n-1}(\mathbf{F})$ by the lemma. The result now follows easily.

Definition

If $A \in M_{n \times n}(\mathbf{F})$, then $p(\lambda) = \det(A - \lambda I_n)$ is called the characteristic polynomial of A.

Proposition

If $A \in M_{n \times n}(\mathbf{F})$, then A has at most n eigenvalues.

Proposition

Our technical proposition implies that the characteristic polynomial $p(\lambda) = \det(A - \lambda I_n)$ is a polynomial of degree n. Hence p has at most n roots. (We call λ a root of p if and only if $p(\lambda) = 0$.) But our earlier theorem implies that λ is an eigenvalue if and only if λ is a root of the characteristic polynomial.

Remark

Let $A \in M_{n \times n}(\mathbf{F})$. If λ is a root of the characteristic polynomial $p(\lambda) = \det(A - \lambda I_n)$, then λ is an eigenvalue. The eigenvectors with eigenvalue λ are exactly the nontrivial solutions to $(A - \lambda I_n)x = 0$.

Example

Try to diagonalize $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$.

Solution

First compute the characteristic polynomial $p(\lambda) = \det(A - \lambda I_n) = \det(\frac{1-\lambda}{3} \frac{2}{2-\lambda}) = (\lambda - 1)(\lambda - 2) - 6 = \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4).$

Solution (Solution Continued)

Therefore the eigenvalues are just $\lambda = -1$ and $\lambda = 4$. To find eigenvalues, we consider $(A - \lambda I_2)x = 0$. Since $A + I_2 = \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix}$ is row equivalent to $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, the solutions to $(A + I_2)x = 0$ are the same as the solutions to $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x = 0$. (Why!?! Consider the augmented matrices.) Thus all the eigenvectors are (nonzero) multiples of $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$. On the other hand $A - 4I_2 = \begin{pmatrix} -3 & 2 \\ 3 & -2 \end{pmatrix}$ is row equivalent to $\begin{pmatrix} -3 & 2 \\ 0 & 0 \end{pmatrix}$, so the solutions to $(A - 4I_2)x = 0$ are the same as for $\begin{pmatrix} -3 & 2 \\ 0 & 0 \end{pmatrix} x = 0$. Hence the eigenvectors with eigenvalue 4 are all (nonzero) multiples of $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Hence $\{\begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix}\}$ is a basis of eigenvectors for A and if $Q = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$ then

$$Q^{-1}AQ = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}.$$

Note that there are many possible choices for Q here!

A Bigger Example

Example

Now let
$$A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$$
. Then

$$p(\lambda) = \det(A - \lambda I_3) = \det\begin{pmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{pmatrix} \text{ is given by}$$

$$p(\lambda) = (1 - \lambda) \det(\frac{-5 - \lambda & -3}{3 & 1 - \lambda}) - 3 \det(\frac{-3 & -3}{3 & 1 - \lambda}) + 3 \det(\frac{-3 & -5 - \lambda}{3 & 3})$$

$$= (1 - \lambda) [(\lambda + 5)(\lambda - 1) + 9] - 3(3(\lambda - 1) + 9) + 3(-9 + 3(\lambda + 5)) = (1 - \lambda)(\lambda^2 + 4\lambda + 4) - 9(\lambda + 2) + 9(\lambda + 2)$$

 $= -(\lambda-1)(\lambda+2)^2.$

Example

Example (Continued)

Thus the eigenvalues are $\lambda = 1$ and $\lambda = -2$. To find the eigenvectors for $\lambda = -2$ we consider

$$A + 2I_3 = \begin{pmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{pmatrix} \underbrace{\sim}_{\text{row equivalent}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence the eigenvectors for $\lambda = -2$ are spanned by $v_1 = (-1, 0, 1)$ and $v_2 = (1, -1, 0)$.

Similarly,

$$A - I_3 = \begin{pmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Thus the $\lambda = 1$ eigenvectors are nonzero multiples of $v_3 = (1, -1, 1)$.

Example (Continued)

Now we need to see that $\beta = \{v_1, v_2, v_3\}$ is a basis. But if Q is the matrix with columns v_1 , v_2 , and v_3 , then

$$det(Q) = det\begin{pmatrix} -1 & -1 & 1\\ 0 & 1 & -1\\ 1 & 0 & 1 \end{pmatrix} = det\begin{pmatrix} -1 & -1 & 0\\ 0 & 1 & 0\\ 1 & 0 & 1 \end{pmatrix}$$
$$= det\begin{pmatrix} -1 & -1 & 0\\ 0 & 1 & 0\\ 1 & 0 & 1 \end{pmatrix}$$

Hence β is a basis of eigenvectors and $Q^{-1}AQ = \begin{pmatrix} -2 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 1 \end{pmatrix}$.

1 That is enough for today.