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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 Our Midterm must be turned in by Saturday, February 20th,
at 10pm. No exceptions. It covers through §4.3 in the text.

4 This time you will have 3.5 hours with 30 minutes uploading
time. You should plan ahead and block out a time to take the
exam now.

5 But first, are there any questions from last time?
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Review

Definition

A linear operator T on a finite-dimensional vector space V is said
to be diagonalizable if there is an ordered basis β for V such that
[T ]β is a diagonal matrix.

Definition

Suppose that T is a linear operator on a vector space V . Then a
nonzero vector v ∈ V is called an eigenvector for T if there is a
scalar λ ∈ F such that T (v) = λv . We call λ the eigenvalue
corresponding the the eigenvector v .

If A ∈ Mn×n(F), then we call a nonzero v ∈ Fn an eigenvector for
A if it is an eigenvector for LA so that Av = λv for some scalar λ.
Again, we call λ the eigenvalue corresponding to the eigenvector v .
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Review

Theorem

A linear operator T on a finite-dimensional vector space V is
diagonalizable if and only if there is an ordered basis for V
consisting of eigenvectors for T . If β = { v1, . . . , vn } is an ordered
basis of eigenvectors for T , then [T ]β is the diagonal matrix
D = (Dij) where

Dij =

{
λi if i = j , and

0 if i 6= j

where λi is the eigenvalue corresponding to the eigenvector vi .
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Review

Corollary

A matrix A ∈ Mn×n(F) is diagonalizable if and only if there is an
ordered basis of Fn consisting of eigenvectors for A. If
β = { v1, . . . , vn } is an ordered basis of eigenvectors for A and if
Q = [v1 · · · vn] is the n × n-matrix whose j th-column is vj , then
D = Q−1AQ is a diagonal matrix such that Dii is the eigenvalue
corresponding to vi . In particular, A is diagonalizable if and only if
it is similar to a diagonal matrix.
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Review

Theorem

Suppose that A ∈ Mn×n(F). Then λ ∈ F is an eigenvalue for A if
and only if det(A− λIn) = 0.

Definition

If A ∈ Mn×n(F), then p(λ) = det(A− λIn) is called the
characteristic polynomial of A.

Proposition

If A ∈ Mn×n(F), then A has at most n eigenvalues.
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Determinants of Linear Operators

Remark

As we saw Wednesday, the key to finding eigenvalues, and hence
eigenvectors, of a matrix is the characteristic polynomial obtained
via the determinant. Suppose now that T is a linear operator on a
finite-dimensional vector space V with dim(V ) = n. If β is an
ordered basis for V , then [T ]β is a n× n-matrix so we can compute
its determinant det

(
[T ]β

)
. If γ is another ordered basis for V ,

then the Change of Basis Theorem implies that [T ]γ = Q−1[T ]βQ

for the change of coordinate matrix [Q] = [IV ]βγ . Then as you
proved on homework, det

(
[T ]γ

)
= det

(
[T ]β

)
. This allows us to

make the following definition.

Definition

If V is a finite-dimensional vector space and T ∈ L(V ), then the
determinant of T , written det(T ), is given by det

(
[T ]β

)
where β

is any ordered basis for V .

Dana P. Williams Math 24: Winter 2021 Lecture 19



Invertibility

Proposition

Suppose that V is a finite-dimensional vector space and
T ∈ L(V ). Then T is invertible if and only if det(T ) 6= 0.

Proof.

If β is any ordered basis for V , then we proved that T is invertible
if and only if [T ]β is. But [T ]β is invertible if and only if
det
(
[T ]β

)
6= 0 and det

(
[T ]β

)
= det(T ) by definition.
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Characteristic Polynomial

Definition

If T is a linear operator on a finite-dimensional vector space V ,
then the characteristic polynomial of T is p(λ) = det(T − λIV ).

Remark

If β is an ordered basis for V and dim(V ) = n, then we can
“transfer” the problem of finding eigenvalues and eigenvectors for
T ∈ L(V ) to the corresponding problem for the matrix A = [T ]β
via our standard picture:

V V

Fn Fn

T

ϕβ ϕβ

LA

where ϕβ is the standard representation of V given by
ϕβ(v) = [v ]β.
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Say What?

Example

For example, suppose that x is an eigenvector for A = [T ]β with
eigenvalue λ. That is, Ax = λx . Let v = ϕ−1β (x). Then
[T (v)]β = [T ]β[v ]β = Ax = λx = λ[v ]β = [λv ]β. Since ϕβ is an
isomorphism, this means T (v) = λv . I leave it to you to check
that the argument is reversible; that is, if v is an eigenvector for T
with eigenvalue λ, then ϕβ(v) = [v ]β is an eigenvector for
A = [T ]β with eigenvalue λ.

Since p(λ) = det(T − λIV ) = det
(
[T − λIV ]β

)
= det

(
[T ]β − λIn

)
,

the characteristic polynomial of T and A = [T ]β are the same.
Hence the eigenvalues for T are exactly the roots of its
characteristic polynomial.
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An Example

Example

Define T : P2(R)→ P2(R) be given by
T (p(x)) = p(x) + (1 + x)p′(x) + p′′(x). You can verify that T is a
linear operator. Let β = { 1, x , x2 } be the standard basis for
P2(R). Then

[T ]β =
[
[T (1)]β [T (x)]β [T (x2]β

]
.

Since T (1) = 1, T (x) = 2x + 1 and
T (x2) = x2 + (1 + x)2x + 2 = 3x2 + 2x + 2, we have

[T ]β =

 1 1 2
0 2 2
0 0 3

 .
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Example Continued

Example (Continued)

Since the matrix is upper triangular, the characteristic polynomial
is p(λ) = −(λ− 1)(λ− 2)(λ− 3) and the eigenvalues are
λ = 1, 2, 3. To find the eigenvectors, we consider A = [T ]β which
has the same eigenvalues! We start with λ = 1 and consider the
homogeneous system A− I3x = 0. But

A− I3 =
(

0 1 2
0 1 2
0 0 2

)
∼︸︷︷︸

row equivalent

(
0 1 0
0 0 1
0 0 0

)
.

Thus (A− I3)x = 0 is equivalent to the system x2 = 0 and x3 = 0.
Therefore the eigenvectors with eigenvalue λ = 1 are all nonzero
multiples of u1 = (1, 0, 0). Next we consider

A− 2I3 =
(−1 1 2

0 0 2
0 0 1

)
∼
( 1 −1 0

0 0 1
0 0 0

)
.

Hence the eigenvectors with eigenvalue λ = 2 are all nonzero
multiples of u2 = (1, 1, 0).
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Example Continued

Example (Continued)

I will leave it to you to check that the eigenvectors with eigenvalue
λ = 3 are all multiples of u3 = (2, 2, 1) and that { u1, u2, u3 } are a
basis in R3 of eigenvectors for A. Since ϕ−1β is an isomorphism,

γ = { 1, 1 + x , 2 + 2x + x2 } is a basis for P2(R) of eigenvectors for
T . Moreover,

[T ]γ =

 1 0 0
0 2 0
0 0 3

 .
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Break Time

Time for a break and some questions.
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Eigenspaces

Definition

Suppose that T ∈ L(V ) is a linear operator on a vector space V .
If λ is an eigenvalue for T , then Eλ = { v ∈ V : T (v) = λv } is
called that λ-eigenspace for T . If A ∈ Mn×n(F) and λ is an
eigenvalue for A, then the λ-eigenspace for A is just the
λ-eigenspace for LA.

Remark

Since Eλ = N(T − λIV ), the λ-eigenspace is a subspace of V . The
nonzero elements of Eλ are exactly the eigenvectors of T with
eigenvalue λ.
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Save

Remark

When trying to find a basis of eigenvectors, we need to worry
about whether the eigenvectors we find are linearly independent.
Our next result will make that work a lot easier as it will allow us
to work one eigenvalue at a time. To show off, we will temporarily
dispense with our standard assumption of finite-dimension. But
first a definition.

Theorem

Suppose that V is a vector space and T ∈ L(V ). Suppose that
λ1, . . . , λk are distinct eigenvalues for T . For each 1 ≤ i ≤ k, let
Si be a finite linear independent in Eλi . Then S = S1 ∪ · · · ∪ Sk is
linear independent.
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A Lemma

Remark

To make the proof a bit less messy, we will prove a special case
first—namely the case where each Si consists of a single vector.

Lemma

Suppose that V is a vector space and T ∈ L(V ). Suppose that
λ1, . . . , λk are distinct elements eigenvalues of T and that vi ∈ Eλi
for 1 ≤ i ≤ k. If

v1 + v2 + · · ·+ vk = 0V ,

then each vi = 0V .
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Proof

Proof of the Lemma.

The result is trivial if k = 1. So we suppose that the result holds
for k vectors and consider k + 1 vectors such that

v1 + · · ·+ vk + vk+1 = 0V .

Then
vk+1 = −v1 − · · · − vk

If we apply T to both sides then

λk+1vk+1 = −λ1v1 − · · · − λkvk .

But we also have

λk+1vk+1 = −λk+1v1 − · · · − λk+1vk
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Proof

Proof Continued.

Therefore subtracting the last two equations gives

0V = v ′1 + · · ·+ v ′k

where v ′i = (λk+1 − λi )vi ∈ Eλi . Hence our induction hypothesis
implies that for all i

v ′i = 0V = (λk+1 − λi )vi .

Since λk+1 − λi 6= 0, we have vi = 0V for 1 ≤ i ≤ k . But then we
also have vk+1 = 0V . This completes the proof.
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Proof of the Theorem

Proof of the Theorem.

Suppose that Si = { vi1, . . . , vini } is a linearly independent subset

of Eλi for each i and that S =
⋃k

i=1 Si . Suppose that

k∑
i=1

ni∑
j=1

aijvij = 0V .

We need to see that each aij must be 0. Let

vi =

ni∑
j=1

aijvij . (†)

Then vi ∈ Eλi and
v1 + · · ·+ vk = 0V .

The lemma implies that vi = 0V for each i . Since Si is linearly
independent, (†) implies that each aij = 0 for all i . This completes
the proof.
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Distinct Eigenvalues

Corollary

Suppose that V is n-dimensional and that T ∈ L(V ) has
n-distinct eigenvalues. Then T is diagonalizable.

Proof.

Suppose that λ1, . . . , λn are the distinct eigenvalues of T . Let vi
be an eigenvector with eigenvalue λi . Then the previous theorem
implies that β = { v1, . . . , vn } is linearly independent. Since
dim(V ) = n, β is a basis of eigenvectors. Hence T is
diagonalizable.
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Example

Example

Let A =

 1 0 1
0 1 0
1 0 1

. Then the characteristic polynomial of A is

det(A− λI3) = det

 1− λ 0 1
0 1− λ 0
1 0 1− λ

 =

−(λ− 1) det

(
λ− 1 1

1 λ− 1

)
= −(λ− 1)

[
(λ− 1)2 − 1

]
=

−(λ− 1)(λ2 − 2λ) and the eigenvalues are 0, 1 and 2. Hence A is
diagonalizable.
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Converse

Remark

The converse of the previous result is not true. For example, at the

end of yesterday’s lecture we showed that A =

 1 3 3
−3 −5 −3

3 3 1

.

Then p(λ) = det(A− λI3) = det

 1− λ 3 3
−3 −5− λ −3
3 3 1− λ

 had

only two eigenvalues, λ = 1 and λ = −2. Nevertheless, we found a
basis of eigenvectors and A is diagonalizable.

Of course, trivially, any diagonal matrix is diagonalizable no matter
what entries it has on the diagonal. For example A = In is
diagonalizable for all n and has only one eigenvalue.

Next week, we are going to have to look more deeply at criteria for
diagonalizability.
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Enough

1 That is enough for today.
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