Math 24: Winter 2021 Lecture 19

Dana P. Williams

Dartmouth College

Friday, February 19, 2021

- We should be recording.
- Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
- Our Midterm must be turned in by Saturday, February 20th, at 10pm. No exceptions. It covers through §4.3 in the text.
- This time you will have 3.5 hours with 30 minutes uploading time. You should plan ahead and block out a time to take the exam now.
- Sut first, are there any questions from last time?

Definition

A linear operator T on a finite-dimensional vector space V is said to be diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Definition

Suppose that T is a linear operator on a vector space V. Then a nonzero vector $v \in V$ is called an eigenvector for T if there is a scalar $\lambda \in \mathbf{F}$ such that $T(v) = \lambda v$. We call λ the eigenvalue corresponding the the eigenvector v.

If $A \in M_{n \times n}(\mathbf{F})$, then we call a nonzero $v \in \mathbf{F}^n$ an eigenvector for A if it is an eigenvector for L_A so that $Av = \lambda v$ for some scalar λ . Again, we call λ the eigenvalue corresponding to the eigenvector v.

Theorem

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there is an ordered basis for V consisting of eigenvectors for T. If $\beta = \{v_1, \ldots, v_n\}$ is an ordered basis of eigenvectors for T, then $[T]_{\beta}$ is the diagonal matrix $D = (D_{ij})$ where

$$\mathcal{D}_{ij} = egin{cases} \lambda_i & ext{if } i = j, ext{ and} \ 0 & ext{if } i
eq j \end{cases}$$

where λ_i is the eigenvalue corresponding to the eigenvector v_i .

Corollary

A matrix $A \in M_{n \times n}(\mathbf{F})$ is diagonalizable if and only if there is an ordered basis of \mathbf{F}^n consisting of eigenvectors for A. If $\beta = \{v_1, \ldots, v_n\}$ is an ordered basis of eigenvectors for A and if $Q = [v_1 \cdots v_n]$ is the $n \times n$ -matrix whose j^{th} -column is v_j , then $D = Q^{-1}AQ$ is a diagonal matrix such that D_{ii} is the eigenvalue corresponding to v_i . In particular, A is diagonalizable if and only if it is similar to a diagonal matrix.

Theorem

Suppose that $A \in M_{n \times n}(\mathbf{F})$. Then $\lambda \in \mathbf{F}$ is an eigenvalue for A if and only if det $(A - \lambda I_n) = 0$.

Definition

If
$$A \in M_{n \times n}(\mathbf{F})$$
, then $p(\lambda) = \det(A - \lambda I_n)$ is called the characteristic polynomial of A .

Proposition

If $A \in M_{n \times n}(\mathbf{F})$, then A has at most n eigenvalues.

Determinants of Linear Operators

Remark

As we saw Wednesday, the key to finding eigenvalues, and hence eigenvectors, of a matrix is the characteristic polynomial obtained via the determinant. Suppose now that T is a linear operator on a finite-dimensional vector space V with dim(V) = n. If β is an ordered basis for V, then $[T]_{\beta}$ is a $n \times n$ -matrix so we can compute its determinant det $([T]_{\beta})$. If γ is another ordered basis for V, then the Change of Basis Theorem implies that $[T]_{\gamma} = Q^{-1}[T]_{\beta}Q$ for the change of coordinate matrix $[Q] = [I_V]_{\gamma}^{\beta}$. Then as you proved on homework, det $([T]_{\gamma}) = det([T]_{\beta})$. This allows us to make the following definition.

Definition

If V is a finite-dimensional vector space and $T \in \mathcal{L}(V)$, then the determinant of T, written det(T), is given by det($[T]_{\beta}$) where β is any ordered basis for V.

Proposition

Suppose that V is a finite-dimensional vector space and $T \in \mathcal{L}(V)$. Then T is invertible if and only if det $(T) \neq 0$.

Proof.

If β is any ordered basis for V, then we proved that T is invertible if and only if $[T]_{\beta}$ is. But $[T]_{\beta}$ is invertible if and only if $\det([T]_{\beta}) \neq 0$ and $\det([T]_{\beta}) = \det(T)$ by definition.

Characteristic Polynomial

Definition

If T is a linear operator on a finite-dimensional vector space V, then the characteristic polynomial of T is $p(\lambda) = \det(T - \lambda I_V)$.

Remark

If β is an ordered basis for V and dim(V) = n, then we can "transfer" the problem of finding eigenvalues and eigenvectors for $T \in \mathcal{L}(V)$ to the corresponding problem for the matrix $A = [T]_{\beta}$ via our standard picture:

where φ_{β} is the standard representation of V given by $\varphi_{\beta}(\mathbf{v}) = [\mathbf{v}]_{\beta}.$

Example

For example, suppose that x is an eigenvector for $A = [T]_{\beta}$ with eigenvalue λ . That is, $Ax = \lambda x$. Let $v = \varphi_{\beta}^{-1}(x)$. Then $[T(v)]_{\beta} = [T]_{\beta}[v]_{\beta} = Ax = \lambda x = \lambda [v]_{\beta} = [\lambda v]_{\beta}$. Since φ_{β} is an isomorphism, this means $T(v) = \lambda v$. I leave it to you to check that the argument is reversible; that is, if v is an eigenvector for T with eigenvalue λ , then $\varphi_{\beta}(v) = [v]_{\beta}$ is an eigenvector for $A = [T]_{\beta}$ with eigenvalue λ .

Since $p(\lambda) = \det(T - \lambda I_V) = \det([T - \lambda I_V]_{\beta}) = \det([T]_{\beta} - \lambda I_n)$, the characteristic polynomial of T and $A = [T]_{\beta}$ are the same. Hence the eigenvalues for T are exactly the roots of its characteristic polynomial.

Example

Define $T : P_2(\mathbf{R}) \to P_2(\mathbf{R})$ be given by T(p(x)) = p(x) + (1+x)p'(x) + p''(x). You can verify that T is a linear operator. Let $\beta = \{1, x, x^2\}$ be the standard basis for $P_2(\mathbf{R})$. Then

$$[T]_{eta} = \left[[T(1)]_{eta} [T(x)]_{eta} [T(x^2]_{eta}
ight].$$

Since T(1) = 1, T(x) = 2x + 1 and $T(x^2) = x^2 + (1 + x)2x + 2 = 3x^2 + 2x + 2$, we have

$$[\mathcal{T}]_{eta} = \left(egin{array}{cccc} 1 & 1 & 2 \ 0 & 2 & 2 \ 0 & 0 & 3 \end{array}
ight).$$

Example Continued

Example (Continued)

Since the matrix is upper triangular, the characteristic polynomial is $p(\lambda) = -(\lambda - 1)(\lambda - 2)(\lambda - 3)$ and the eigenvalues are $\lambda = 1, 2, 3$. To find the eigenvectors, we consider $A = [T]_{\beta}$ which has the same eigenvalues! We start with $\lambda = 1$ and consider the homogeneous system $A - I_3 x = 0$. But

$$A - I_3 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} \underbrace{\sim}_{\text{row equivalent}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus $(A - I_3)x = 0$ is equivalent to the system $x_2 = 0$ and $x_3 = 0$. Therefore the eigenvectors with eigenvalue $\lambda = 1$ are all nonzero multiples of $u_1 = (1, 0, 0)$. Next we consider

$$A - 2I_3 = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence the eigenvectors with eigenvalue $\lambda = 2$ are all nonzero multiples of $u_2 = (1, 1, 0)$.

Example (Continued)

I will leave it to you to check that the eigenvectors with eigenvalue $\lambda = 3$ are all multiples of $u_3 = (2, 2, 1)$ and that $\{u_1, u_2, u_3\}$ are a basis in \mathbb{R}^3 of eigenvectors for A. Since φ_{β}^{-1} is an isomorphism, $\gamma = \{1, 1 + x, 2 + 2x + x^2\}$ is a basis for $\mathbb{P}_2(\mathbb{R})$ of eigenvectors for T. Moreover,

$$[\mathcal{T}]_{\gamma} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 3 \end{array}
ight).$$

Time for a break and some questions.

Definition

Suppose that $T \in \mathcal{L}(V)$ is a linear operator on a vector space V. If λ is an eigenvalue for T, then $E_{\lambda} = \{ v \in V : T(v) = \lambda v \}$ is called that λ -eigenspace for T. If $A \in M_{n \times n}(\mathbf{F})$ and λ is an eigenvalue for A, then the λ -eigenspace for A is just the λ -eigenspace for L_A .

Remark

Since $E_{\lambda} = N(T - \lambda I_V)$, the λ -eigenspace is a subspace of V. The nonzero elements of E_{λ} are exactly the eigenvectors of T with eigenvalue λ .

Remark

When trying to find a basis of eigenvectors, we need to worry about whether the eigenvectors we find are linearly independent. Our next result will make that work a lot easier as it will allow us to work one eigenvalue at a time. To show off, we will temporarily dispense with our standard assumption of finite-dimension. But first a definition.

Theorem

Suppose that V is a vector space and $T \in \mathcal{L}(V)$. Suppose that $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues for T. For each $1 \le i \le k$, let S_i be a finite linear independent in E_{λ_i} . Then $S = S_1 \cup \cdots \cup S_k$ is linear independent.

Remark

To make the proof a bit less messy, we will prove a special case first—namely the case where each S_i consists of a single vector.

Lemma

Suppose that V is a vector space and $T \in \mathcal{L}(V)$. Suppose that $\lambda_1, \ldots, \lambda_k$ are distinct elements eigenvalues of T and that $v_i \in E_{\lambda_i}$ for $1 \leq i \leq k$. If

$$v_1+v_2+\cdots+v_k=0_V,$$

then each $v_i = 0_V$.

Proof

Proof of the Lemma.

The result is trivial if k = 1. So we suppose that the result holds for k vectors and consider k + 1 vectors such that

$$v_1+\cdots+v_k+v_{k+1}=0_V.$$

Then

$$v_{k+1} = -v_1 - \cdots - v_k$$

If we apply T to both sides then

$$\lambda_{k+1}v_{k+1} = -\lambda_1v_1 - \cdots - \lambda_kv_k.$$

But we also have

$$\lambda_{k+1}v_{k+1} = -\lambda_{k+1}v_1 - \cdots - \lambda_{k+1}v_k$$

Proof Continued.

Therefore subtracting the last two equations gives

$$0_V = v_1' + \dots + v_k'$$

where $v'_i = (\lambda_{k+1} - \lambda_i)v_i \in E_{\lambda_i}$. Hence our induction hypothesis implies that for all *i*

$$\mathbf{v}_i' = \mathbf{0}_V = (\lambda_{k+1} - \lambda_i)\mathbf{v}_i.$$

Since $\lambda_{k+1} - \lambda_i \neq 0$, we have $v_i = 0_V$ for $1 \le i \le k$. But then we also have $v_{k+1} = 0_V$. This completes the proof.

Proof of the Theorem

Proof of the Theorem.

Suppose that $S_i = \{v_{i1}, \dots, v_{in_i}\}$ is a linearly independent subset of E_{λ_i} for each *i* and that $S = \bigcup_{i=1}^k S_i$. Suppose that

$$\sum_{i=1}^k \sum_{j=1}^{n_i} a_{ij} v_{ij} = 0_V.$$

We need to see that each a_{ij} must be 0. Let

$$v_i = \sum_{j=1}^{n_i} a_{ij} v_{ij}.$$
 (†)

Then $v_i \in E_{\lambda_i}$ and

$$v_1+\cdots+v_k=0_V.$$

The lemma implies that $v_i = 0_V$ for each *i*. Since S_i is linearly independent, (†) implies that each $a_{ij} = 0$ for all *i*. This completes the proof.

Corollary

Suppose that V is n-dimensional and that $T \in \mathcal{L}(V)$ has n-distinct eigenvalues. Then T is diagonalizable.

Proof.

Suppose that $\lambda_1, \ldots, \lambda_n$ are the distinct eigenvalues of T. Let v_i be an eigenvector with eigenvalue λ_i . Then the previous theorem implies that $\beta = \{v_1, \ldots, v_n\}$ is linearly independent. Since dim $(V) = n, \beta$ is a basis of eigenvectors. Hence T is diagonalizable.

Example

Let
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. Then the characteristic polynomial of A is

$$det(A - \lambda I_3) = det \begin{pmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & 1 - \lambda \end{pmatrix} = -(\lambda - 1)det \begin{pmatrix} \lambda - 1 & 1 \\ 1 & \lambda - 1 \end{pmatrix} = -(\lambda - 1)[(\lambda - 1)^2 - 1] = -(\lambda - 1)(\lambda^2 - 2\lambda)$$
 and the eigenvalues are 0, 1 and 2. Hence A is diagonalizable.

Remark

The converse of the previous result is not true. For example, at the end of yesterday's lecture we showed that $A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$. Then $p(\lambda) = \det(A - \lambda I_3) = \det\begin{pmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{pmatrix}$ had only two eigenvalues, $\lambda = 1$ and $\lambda = -2$. Nevertheless, we found a basis of eigenvectors and A is diagonalizable.

Of course, trivially, any diagonal matrix is diagonalizable no matter what entries it has on the diagonal. For example $A = I_n$ is diagonalizable for all n and has only one eigenvalue.

Next week, we are going to have to look more deeply at criteria for diagonalizability.

1 That is enough for today.