Math 24: Winter 2021 Lecture 20

Dana P. Williams

Dartmouth College

Monday, February 22, 2021

- **1** We should be recording.
- Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
- Is But first, are there any questions from last time?

Eigenspaces

Definition

Suppose that $T \in \mathcal{L}(V)$ is a linear operator on a vector space V. If λ is an eigenvalue for T, then $E_{\lambda} = \{ v \in V : T(v) = \lambda v \}$ is called that λ -eigenspace for T. If $A \in M_{n \times n}(\mathbf{F})$ and λ is an eigenvalue for A, then the λ -eigenspace for A is just the λ -eigenspace for L_A .

Theorem

Suppose that V is a vector space and $T \in \mathcal{L}(V)$. Suppose that $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues for T. For each $1 \le i \le k$, let S_i be a finite linear independent in E_{λ_i} . Then $S = S_1 \cup \cdots \cup S_k$ is linear independent.

Corollary

Suppose that V is n-dimensional and that $T \in \mathcal{L}(V)$ has n-distinct eigenvalues. Then T is diagonalizable.

Definition

A polynomial $p(\lambda) \in P(\mathbf{F})$ splits over \mathbf{F} if there are scalars $c, a_1, \ldots, a_n \in \mathbf{F}$ such that

$$p(\lambda) = c(\lambda - a_1) \cdots (\lambda - a_n)$$

Example

For example, the polynomial $p(\lambda) = -\lambda^3 + 6\lambda^2 - 11\lambda + 6$ factors as $-(\lambda - 1)(\lambda - 2)(\lambda - 3)$, so it splits over **R**. (Unfortunately, there is no easy way to see this other than multiplying out the right-hand side.) But the polynomial $q(\lambda) = \lambda^3 - \lambda^2 + \lambda - 1 = \lambda^2(\lambda - 1) + \lambda - 1 = (\lambda - 1)(\lambda^2 + 1)$ does not split over **R**. However, it does split over **C**: $q(\lambda) = (\lambda - 1)(\lambda - i)(\lambda + i)$.

The Joy of Splitting

Theorem

Suppose that V is a finite-dimensional vector space over **F** and that $T \in \mathcal{L}(V)$ is diagonalizable. Then the characteristic polynomial of T splits over **F**.

Proof.

Since
$$T$$
 is diagonalizable, there is a basis $\beta = \{v_1, \dots, v_n\}$ of
eigenvectors for T . Then $[T]_{\beta} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$ is diagonal. Then
the characteristic polynomial of T is

$$p(\lambda) = \det(D - \lambda I_n) = \det\begin{pmatrix}\lambda_1 - \lambda & 0 & \cdots & 0\\ 0 & \lambda_2 - \lambda & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n - \lambda\end{pmatrix}$$
$$= (-1)^n (\lambda - \lambda_1) (\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

Therefore $p(\lambda)$ splits over **F**.

Remark

The converse of the preceding theorem does not hold. We know that

$$A=\left(egin{array}{cc} 1 & 0 \ 1 & 1 \end{array}
ight)$$

is not diagonalizable, but its characteristic polynomial $p(\lambda) = (\lambda - 1)^2$ certainly splits.

Definition

Suppose that V is a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If λ_0 is an eigenvalue for T, then the multiplicity of λ_0 is the largest positive integer k such that $(\lambda - \lambda_0)^k$ is a factor of the characteristic polynomial $p(\lambda)$ of T. We use the same terminology for the eigenvalues of a matrix.

Example

Let $A = \begin{pmatrix} 2 & 1 & 2 & 1 \\ 0 & 3 & 1 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$. Then the characteristic polynomial of A is $p(\lambda) = (\lambda - 3)(\lambda - 2)^3$. Thus $\lambda = 3$ has multiplicity 1 while $\lambda = 2$ has multiplicity 3.

Theorem

Suppose that V is a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If λ is an eigenvalue of T of multiplicity m, then

 $1 \leq \dim(E_{\lambda}) \leq m$

where E_{λ} is the λ -eigenspace for T.

Remark

For the proof, we need a little lemma on determinants of block matrices that is of some interest in itself.

A Lemma

Lemma

Let $D \in M_{n \times n}(\mathbf{F})$ have the block form

$$D = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

where $A \in M_{k \times k}(\mathbf{F})$ and $C \in M_{(n-k) \times (n-k)}(\mathbf{F})$. Then $\det(D) = \det(A) \det(C)$.

Proof of the Lemma.

We will use the result that can compute det(D) be expanding down the first column. Then the result is clear if k = 1. So we assume we know the result if $k - 1 \ge 1$. Then

$$\det(D) = \sum_{j=1}^{n} (-1)^{i+1} D_{i1} \det(\widetilde{D}_{i1}) = \sum_{j=1}^{k} (-1)^{i+1} A_{i1} \det(\widetilde{D}_{i1}).$$

Proof Continued.

But \widetilde{D}_{i1} is of the form

$$D_{i1} = \begin{pmatrix} \widetilde{A}_{i1} & B(i) \\ 0 & C \end{pmatrix}$$

for an $(k-1) \times (n-k)$ matrix B(i). Since \widetilde{A}_{i1} is $(n-1) \times (n-1)$, our induction hypothesis implies that,

$$det(D) = \left(\sum_{j=1}^{k} (-1)^{i+1} A_{i1} det(\widetilde{A}_{i1})\right) det(C)$$
$$= det(A) det(C)$$

Proof of the Theorem.

We need to prove the $1 \leq \dim(E_{\lambda}) \leq m$ where *m* is the multiplicity of λ . Let $\alpha = \{v_1, \ldots, v_p\}$ be an ordered basis for E_{λ} . (Since λ is an eigenvalue, $p \geq 1$!) Now extend α to a basis $\beta = \{v_1, \ldots, v_p, v_{p+1}, \ldots, v_n\}$ for *V*. Since $[T(v_i)]_{\beta} = [\lambda v_i]_{\beta} = \lambda e_i$ if $1 \leq i \leq p$, $[T]_{\beta}$ has the form

$$[T]_{\beta} = \left(\begin{array}{cc} \lambda I_{p} & B\\ O & C \end{array}\right).$$

Therefore the characteristic polynomial of T is

$$p(t) = \det(A - tI_n) = \det\begin{pmatrix}\lambda I_p - tI_p & B\\ O & C - tI_{n-p}\end{pmatrix}$$
$$= \det\begin{pmatrix}(\lambda - t)I_p & B\\ O & C - tI_{n-p}\end{pmatrix}$$

Proof Continued.

By our lemma,

$$p(t) = \det((\lambda - t)I_p) \det(C - tI_{n-p})$$

= $(\lambda - t)^p g(t) = (-1)^p (t - \lambda)^p g(t)$

where g(t) is a polynomial. Thus $(t - \lambda)^p$ is a factor of p(t). Therefore $p \leq m$. Time for a break and some questions.

Theorem

Suppose that V is a finite-dimensional vector space over **F** and $T \in \mathcal{L}(V)$ is a linear operator whose characteristic polynomial splits over **F**. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T with multiplicities m_1, \ldots, m_k , respectively.

- Then T is diagonalizable if and only if $\dim(E_{\lambda_i}) = m_i$ for $1 \le i \le k$.
- **2** If T is diagonalizable and β_i is a basis for E_{λ_i} , then $\beta = \beta_1 \cup \cdots \cup \beta_k$ is a basis for V of eigenvectors for T.

Proof

Proof.

Let $n = \dim(V)$ and $d_i = \dim(E_{\lambda_i})$ for $1 \le i \le k$. Observe that since the characteristic polynomial splits, $\sum_{i=1}^{k} m_i = n$.

Suppose that T is diagonalizable and that β is a basis for V consisting of eigenvectors for T. Note that every element of β is in some E_{λ_i} . Let n_i be the number of vectors in $\beta \cap E_{\lambda_i}$. Since any subset of β is linearly independent and dim $(E_{\lambda_i}) = d_i$, we have $n_i \leq d_i$, and $d_i \leq m_i$ be our theorem. Thus

$$n = \sum_{i=1}^{k} n_i \le \sum_{i=1}^{k} d_i \le \sum_{k=1}^{k} m_i = n.$$

Thus each sum equals *n* and

$$\sum_{i=1}^k (m_i - d_i) = 0.$$

Since $m_i - d_i \ge 0$ for each *i*, we have $m_i = d_i$ for all *i*. This proves the \implies implication of item (1).

Proof Continued.

Conversely, assume that $d_i = m_i$ for all *i*. Let β_i be a basis for E_{λ_i} and let $\beta = \bigcup_{i=1}^k \beta_i$. We proved that β must be linearly independent. But β has

$$\sum_{i=1}^k d_i = \sum_{i=1}^k m_i = n$$

elements. Since dim(V) = n and β is linearly independent, it is basis of eigenvalues. This shows T is diagonalizable.

This proves the other implication for item (1) as well as item (2).

Remark

Now given a linear operator on a *n*-dimensional vector space V, we are now prepared to decide whether T is diagonalizable or not.

- First, the characteristic polynomial of T must split. If it does not, then T is not diagonalizable.
- 2 Second, for every eigenvalue λ of T the dimension of the eigenspace E_{λ} must equal the multiplicity m of λ . Since $\dim(E_{\lambda}) = N(T \lambda I_{V})$, the multiplicity m must equal $n \operatorname{rank}(T \lambda I_{V})$.

Of course, these considerations carry over almost word for word for a square matrix A.

Example

Consider the matrix
$$A = \begin{pmatrix} 2 & a & b \\ 0 & 2 & c \\ 0 & 0 & 3 \end{pmatrix}$$
. The characteristic polynomial is $p(\lambda) = -(\lambda - 3)(\lambda - 2)^2$. Hence the diagonalizability of A depends entirely on what happens with $\lambda = 2$. Why? Since $A - 2I_3 = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{pmatrix}$ has rank equal to 1 only if $a = 0$, it follows that A is diagonalizable if and only if $a = 0$.

Matrix Powers

Example

If $A \in M_{n \times n}(\mathbf{F})$, then it can be useful to compute matrix powers A^k without the hassle of repeated matrix multiplication. But this is routine if A is diagonalizable. Then $A = QDQ^{-1}$ for an invertible matrix Q and a diagonal matrix D. Computing D^k is easy! But

$$A^k = (QDQ^{-1})(QDQ^{-1})\cdots(QDQ^{-1}) = QD^kQ^{-1}$$

For example, let $A = \begin{pmatrix} -3 & 6 \\ -4 & 7 \end{pmatrix}$. I leave it to you go check that A is diagonalizable with $D = Q^{-1}AQ$ for $D = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ and $Q = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$. Then

$$A^{k} = QD^{k}Q^{-1} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -3 & 6 \\ -4 & 7 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 3 - 2 \cdot 3^{k} & 3^{k+1} - 3 \\ 2 - 2 \cdot 3^{k} & 3^{k+1} - 2 \end{pmatrix}.$$

Example

Let $A = \begin{pmatrix} -10 & 18 \\ -9 & 17 \end{pmatrix}$. The goal here is to find a matrix B such that $B^3 = A$. We start by diagonalizing A. Its characteristic polynomial is $p(\lambda) = (-10 - \lambda)(17 - \lambda) + 9 \cdot 18 = \lambda^2 - 7\lambda - 170 + 162 = \lambda^2 - 7\lambda - 8 = (\lambda + 1)(\lambda - 8)$. Then $v_1 = (2, 1)$ is an eigenvector with eigenvalue -1 and $v_2 = (1, 1)$ is an eigenvector with eigenvalue 8. Thus $\begin{pmatrix} -1 & 0 \\ 0 & 8 \end{pmatrix} = Q^{-1}AQ$ where $Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Clearly, $\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}^3 = \begin{pmatrix} -1 & 0 \\ 0 & 8 \end{pmatrix}$. Since $A = Q \begin{pmatrix} -1 & 0 \\ 0 & 8 \end{pmatrix} Q^{-1}$. We can let $B = Q \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} Q^{-1}$. That is,

$$B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ -3 & 5 \end{pmatrix}.$$

1 That is enough for today.