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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 But first, are there any questions from last time?
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Eigenspaces

Definition

Suppose that T ∈ L(V ) is a linear operator on a vector space V .
If λ is an eigenvalue for T , then Eλ = { v ∈ V : T (v) = λv } is
called that λ-eigenspace for T . If A ∈ Mn×n(F) and λ is an
eigenvalue for A, then the λ-eigenspace for A is just the
λ-eigenspace for LA.

Theorem

Suppose that V is a vector space and T ∈ L(V ). Suppose that
λ1, . . . , λk are distinct eigenvalues for T . For each 1 ≤ i ≤ k, let
Si be a finite linear independent in Eλi

. Then S = S1 ∪ · · · ∪ Sk is
linear independent.

Corollary

Suppose that V is n-dimensional and that T ∈ L(V ) has
n-distinct eigenvalues. Then T is diagonalizable.
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Polynomials

Definition

A polynomial p(λ) ∈ P(F) splits over F if there are scalars
c , a1, . . . , an ∈ F such that

p(λ) = c(λ− a1) · · · (λ− an)

Example

For example, the polynomial p(λ) = −λ3 + 6λ2 − 11λ+ 6 factors
as −(λ− 1)(λ− 2)(λ− 3), so it splits over R. (Unfortunately,
there is no easy way to see this other than multiplying out the
right-hand side.) But the polynomial
q(λ) = λ3 − λ2 + λ− 1 = λ2(λ− 1) + λ− 1 = (λ− 1)(λ2 + 1)
does not split over R. However, it does split over C:
q(λ) = (λ− 1)(λ− i)(λ+ i).
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The Joy of Splitting

Theorem

Suppose that V is a finite-dimensional vector space over F and
that T ∈ L(V ) is diagonalizable. Then the characteristic
polynomial of T splits over F.

Proof.

Since T is diagonalizable, there is a basis β = { v1, . . . , vn } of

eigenvectors for T . Then [T ]β =

 λ1 0 ··· 0
0 λ2 ··· 0
...

...
. . .

...
0 0 ··· λn

 is diagonal. Then

the characteristic polynomial of T is

p(λ) = det(D − λIn) = det

 λ1−λ 0 ··· 0
0 λ2−λ ··· 0
...

...
. . .

...
0 0 ··· λn−λ


= (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn).

Therefore p(λ) splits over F.

Dana P. Williams Math 24: Winter 2021 Lecture 20



Converse

Remark

The converse of the preceding theorem does not hold. We know
that

A =

(
1 0
1 1

)
is not diagonalizable, but its characteristic polynomial
p(λ) = (λ− 1)2 certainly splits.
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Multiplicity

Definition

Suppose that V is a finite-dimensional vector space and
T ∈ L(V ). If λ0 is an eigenvalue for T , then the multiplicity of λ0
is the largest positive integer k such that (λ− λ0)k is a factor of
the characteristic polynomial p(λ) of T . We use the same
terminology for the eigenvalues of a matrix.

Example

Let A =

(
2 1 2 1
0 3 1 2
0 0 2 4
0 0 0 2

)
. Then the characteristic polynomial of A is

p(λ) = (λ− 3)(λ− 2)3. Thus λ = 3 has multiplicity 1 while λ = 2
has multiplicity 3.
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Theorem on Multiplicity

Theorem

Suppose that V is a finite-dimensional vector space and
T ∈ L(V ). If λ is an eigenvalue of T of multiplicity m, then

1 ≤ dim(Eλ) ≤ m

where Eλ is the λ-eigenspace for T .

Remark

For the proof, we need a little lemma on determinants of block
matrices that is of some interest in itself.
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A Lemma

Lemma

Let D ∈ Mn×n(F) have the block form

D =

(
A B
0 C

)
where A ∈ Mk×k(F) and C ∈ M(n−k)×(n−k)(F). Then
det(D) = det(A) det(C ).

Proof of the Lemma.

We will use the result that can compute det(D) be expanding
down the first column. Then the result is clear if k = 1. So we
assume we know the result if k − 1 ≥ 1. Then

det(D) =
n∑

j=1

(−1)i+1Di1 det(D̃i1) =
k∑

j=1

(−1)i+1Ai1 det(D̃i1).
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Proof

Proof Continued.

But D̃i1 is of the form

Di1 =

(
Ãi1 B(i)
0 C

)
for an (k − 1)× (n − k) matrix B(i). Since Ãi1 is
(n − 1)× (n − 1), our induction hypothesis implies that,

det(D) =
( k∑
j=1

(−1)i+1Ai1 det(Ãi1)
)

det(C )

= det(A) det(C )
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Proof of the Theorem

Proof of the Theorem.

We need to prove the 1 ≤ dim(Eλ) ≤ m where m is the multiplicity
of λ. Let α = { v1, . . . , vp } be an ordered basis for Eλ. (Since λ is
an eigenvalue, p ≥ 1!) Now extend α to a basis
β = { v1, . . . , vp, vp+1, . . . , vn } for V . Since
[T (vi )]β = [λvi ]β = λei if 1 ≤ i ≤ p, [T ]β has the form

[T ]β =

(
λIp B
O C

)
.

Therefore the characteristic polynomial of T is

p(t) = det(A− tIn) = det

(
λIp − tIp B

O C − tIn−p

)
= det

(
(λ− t)Ip B

O C − tIn−p

)
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Proof

Proof Continued.

By our lemma,

p(t) = det
(
(λ− t)Ip

)
det(C − tIn−p)

= (λ− t)pg(t) = (−1)p(t − λ)pg(t)

where g(t) is a polynomial. Thus (t − λ)p is a factor of p(t).
Therefore p ≤ m.
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Break Time

Time for a break and some questions.
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Diagonalizability

Theorem

Suppose that V is a finite-dimensional vector space over F and
T ∈ L(V ) is a linear operator whose characteristic polynomial
splits over F. Let λ1, . . . , λk be the distinct eigenvalues of T with
multiplicities m1, . . . ,mk , respectively.

1 Then T is diagonalizable if and only if dim(Eλi
) = mi for

1 ≤ i ≤ k .

2 If T is diagonalizable and βi is a basis for Eλi
, then

β = β1 ∪ · · · ∪ βk is a basis for V of eigenvectors for T .
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Proof

Proof.

Let n = dim(V ) and di = dim(Eλi
) for 1 ≤ i ≤ k. Observe that

since the characteristic polynomial splits,
∑k

i=1mi = n.

Suppose that T is diagonalizable and that β is a basis for V
consisting of eigenvectors for T . Note that every element of β is in
some Eλi

. Let ni be the number of vectors in β ∩ Eλi
. Since any

subset of β is linearly independent and dim(Eλi
) = di , we have

ni ≤ di , and di ≤ mi be our theorem. Thus

n =
k∑

i=1

ni ≤
k∑

i=1

di ≤
k∑

k=1

mi = n.

Thus each sum equals n and

k∑
i=1

(mi − di ) = 0.

Since mi − di ≥ 0 for each i , we have mi = di for all i . This proves
the =⇒ implication of item (1).
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Proof

Proof Continued.

Conversely, assume that di = mi for all i . Let βi be a basis for Eλi

and let β =
⋃k

i=1 βi . We proved that β must be linearly
independent. But β has

k∑
i=1

di =
k∑

i=1

mi = n

elements. Since dim(V ) = n and β is linearly independent, it is
basis of eigenvalues. This shows T is diagonalizable.

This proves the other implication for item (1) as well as
item (2).
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Practice

Remark

Now given a linear operator on a n-dimensional vector space V , we
are now prepared to decide whether T is diagonalizable or not.

1 First, the characteristic polynomial of T must split. If it does
not, then T is not diagonalizable.

2 Second, for every eigenvalue λ of T the dimension of the
eigenspace Eλ must equal the multiplicity m of λ. Since
dim(Eλ) = N(T − λIV ), the multiplicity m must equal
n − rank(T − λIV ).

Of course, these considerations carry over almost word for word for
a square matrix A.
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Example

Example

Consider the matrix A =

 2 a b
0 2 c
0 0 3

. The characteristic

polynomial is p(λ) = −(λ− 3)(λ− 2)2. Hence the diagonalizability
of A depends entirely on what happens with λ = 2. Why? Since

A− 2I3 =

 0 a b
0 0 c
0 0 1

 has rank equal to 1 only if a = 0, it

follows that A is diagonalizable if and only if a = 0.
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Matrix Powers

Example

If A ∈ Mn×n(F), then it can be useful to compute matrix powers
Ak without the hassle of repeated matrix multiplication. But this is
routine if A is diagonalizable. Then A = QDQ−1 for an invertible
matrix Q and a diagonal matrix D. Computing Dk is easy! But

Ak = (QDQ−1)(QDQ−1) · · · (QDQ−1) = QDkQ−1.

For example, let A =
(−3 6
−4 7

)
. I leave it to you go check that A is

diagonalizable with D = Q−1AQ for D =
(
1 0
0 3

)
and Q =

(
3 1
2 1

)
.

Then

Ak = QDkQ−1 =

(
3 1
2 1

)(
−3 6
−4 7

)(
1 −1
−2 3

)
=

(
3− 2 · 3k 3k+1 − 3
2− 2 · 3k 3k+1 − 2

)
.
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Example

Example

Let A =
(−10 18

−9 17

)
. The goal here is to find a matrix B such that

B3 = A. We start by diagonalizing A. Its characteristic polynomial
is p(λ) = (−10− λ)(17− λ) + 9 · 18 = λ2 − 7λ− 170 + 162 =
λ2 − 7λ− 8 = (λ+ 1)(λ− 8). Then v1 = (2, 1) is an eigenvector
with eigenvalue −1 and v2 = (1, 1) is an eigenvector with
eigenvalue 8. Thus

(−1 0
0 8

)
= Q−1AQ where Q =

(
2 1
1 1

)
. Clearly,(−1 0

0 2

)3
=
(−1 0

0 8

)
. Since A = Q

(−1 0
0 8

)
Q−1. We can let

B = Q
(−1 0

0 2

)
Q−1. That is,

B =
(
2 1
1 1

)(−1 0
0 2

)(
1 −1

−1 2

)
=
(−2 2
−1 2

)(
1 −1

−1 2

)
=
(−4 6
−3 5

)
.
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Enough

1 That is enough for today.
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