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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 We will be skipping §5.3 and playing in §5.4 for a bit. Then
on to §6.1.

4 But first, are there any questions from last time?
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Polynomials

Definition

A polynomial p(λ) ∈ P(F) splits over F if there are scalars
c , a1, . . . , an ∈ F such that

p(λ) = c(λ− a1) · · · (λ− an)

Theorem

Suppose that V is a finite-dimensional vector space over F and
that T ∈ L(V ) is diagonalizable. Then the characteristic
polynomial of T splits over F.
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Theorem on Multiplicity

Definition

Suppose that V is a finite-dimensional vector space and
T ∈ L(V ). If λ0 is an eigenvalue for T , then the multiplicity of λ0
is the largest positive integer k such that (λ− λ0)k is a factor of
the characteristic polynomial p(λ) of T . We use the same
terminology for the eigenvalues of a matrix.

Theorem

Suppose that V is a finite-dimensional vector space and
T ∈ L(V ). If λ is an eigenvalue of T of multiplicity m, then

1 ≤ dim(Eλ) ≤ m

where Eλ is the λ-eigenspace for T .
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Diagonalizability

Theorem

Suppose that V is a finite-dimensional vector space over F and
T ∈ L(V ) is a linear operator whose characteristic polynomial
splits over F. Let λ1, . . . , λk be the distinct eigenvalues of T with
multiplicities m1, . . . ,mk , respectively.

1 Then T is diagonalizable if and only if dim(Eλi
) = mi for

1 ≤ i ≤ k.

2 If T is diagonalizable and βi is a basis for Eλi
for 1 ≤ i ≤ k,

then β = β1 ∪ · · · ∪ βk is a basis for V of eigenvectors for T .
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Invariant Subspaces

Definition

Let T be a linear operator on a vector space V . A subspace W of
V is called a T -invariant subspace, or just invariant, if v ∈W
implies T (v) ∈W . Alternatively, T (W ) ⊂W .

Example (Low Hanging Fruit)

1 W = {0V }.
2 W = V .

3 W = R(T ).

4 W = N(T ).

5 W = Eλ for any eigenvalue λ for T .

Solution

These are all relatively easy to check and I hope you will do so.
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Example

Example

Define T ∈ L(R3) by T (x , y , z) = (x + y , y + z , z + x) and let
W = { (x , y , z) ∈ R3 : x + y + z = 0 }. Then if (a, b, c) ∈W ,
T (a, b, c) = (a + b, b + c , c + a) and

(a + b) + (b + c) + (c + a) = 2(a + b + c) = 0.

That is T (a, b, c) ∈W and W is an invariant subspace.
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Cyclic Subspaces

Definition

Suppose T ∈ L(V ) and v ∈ V . Then

W = Span{ v ,T (v),T 2(v), . . . }

is called the T -cyclic subspace of V generated by v .

Remark

It is a homework exercise to verify that the T -cyclic subspace W
generated by v is T -invariant and is contained in any invariant
subspace that contains v .
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Example

Example

Let T ∈ L(R3) be given by T (x , y , z) = (x + y , y + z , z + x) as
before. Let v = (1,−1, 0). Then T (v) = (0,−1, 1),
T 2(v) = (−1, 0, 1), T 3(v) = (−1, 1, 0) = −v . Therefore

W = Span{ v ,T (v),T 2(v), . . . }
= Span{ (1,−1, 0), (0,−1, 1), (−1, 0, 1) }
= Span{ (1,−1, 0), (0,−1, 1) }
= { (x , y , z) ∈ R3 : x + y + z = 0 }

Return
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Break Time

Time for a break. Questions?
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Restrictions

Remark

Suppose that T ∈ L(V ) and that W is a T -invariant subspace of
V . Then we can define TW : W →W by TW (v) = T (v) for all
v ∈W . It is a straightforward exercise to see that TW is linear.

Definition

If T ∈ L(V ) and if W is a T -invariant subspace of V , then the
operator TW ∈ L(W ) defined above is called the restriction of T
to W .

Remark

Note that since the restriction TW is itself a bonafide linear
operator, it has its own characteristic polynomial, eigenvalues, and
eigenvectors. Our next result examines how these are related to
those for T .
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Characteristic Polynomials

Theorem

Suppose that T ∈ L(V ) for a finite-dimensional vector space V
and that W is a T-invariant subspace of V . Then the
characteristic polynomial pW (λ) of TW divides the characteristic
polynomial p(λ) of T .

Proof.

Let γ = { v1, . . . , vk } be an ordered basis for W . Let
β = { v1, . . . , vk , vk+1, . . . , vn } be an extension of γ to an ordered
basis of V . Let

A = [T ]β =
[
[T (v1)]β · · · [T (vk)]β [T (vk+1)]β · · · [T (vn)]β

]
.
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Proof

Proof Continued.

Since T (vi ) ∈W for 1 ≤ i ≤ k , the corresponding coordinate
vector [T (vi )]β is of the form (a1, . . . , ak︸ ︷︷ ︸

[TW (vi )]γ

, 0, · · · , 0︸ ︷︷ ︸
n−k

). Hence

[T ]β =

(
[TW ]γ B
O C

)
.

Hence, using our cute lemma from last lecture,

p(λ) = det([T ]β − λIn) = det

(
[TW ]γ − λIk B

O C − λIn−k

)
= det

(
[T ]β − λIn

)
det
(
C − λIn−k

)
= pW (λ)g(λ)

where pW (λ) is the characteristic polynomial of TW and g(λ) is a
polynomial. Thus pW (λ) divides p(λ) as claimed.
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Cyclic Subspaces

Theorem

Suppose that T ∈ L(V ) for a finite-dimensional vector space V .
Suppose that v ∈ V is nonzero and let W = Span{ v ,T (v), . . . }
be the T-cyclic subspace generated by v. Let k = dim(W ).

1 β = { v ,T (v), . . . ,T k−1(v) } is an ordered basis for W .

2 If
a0v + a1T (v) + · · · ak−1T

k−1(v) + T k(v) = 0V ,

then the characteristic polynomial of TW is

pW (λ) = (−1)k
(
a0 + a1λ+ · · · ak−1λ

k−1 + λk .
)
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Proof

Proof.

Since v 6= 0V , {v} is linearly independent. Hence there is a largest
j ≥ 1 such that β = { v ,T (v), . . . ,T j−1(v) } is linearly
independent. (We interpret T 0 = IV .) Such a j exists because V
is finite dimensional. Let Z = Span(β). Note that β is a basis for
Z . We must have T j(v) ∈ Z—otherwise β ∪ {T j(v)} would be
linearly independent. I claim that Z is T -invariant. Let w ∈ Z .
Then there are scalars ai such that
w = a0v + a1T (v) + · · · aj−1T

j−1(v). But then

T (w) = a0T (v) + · · ·+ aj−2T
j−1(v) + aj−1T

j(v).

Since T j(v) ∈ Z = Span(β), so it T (w). This proves the claim.
Since v ∈ Z and Z is T -invariant, it follows from homework that
W ⊂ Z . But we clearly have Z ⊂W . Hence W = Z and
dim(W ) = j . Thus j = k and we have proved item (1).
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Proof

Proof Continued.

(2) Let β = { v ,T (v), . . . ,T k−1(v) } be our ordered basis from
the first part of the proof. Since T k(v) ∈W , there are unique
scalars such that

a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + T k(v) = 0V .

Then

[TW ]β =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −ak−1

 .

You get to use induction to calculate that the characteristic
polynomial of TW is

pW (λ) = (−1)k(a0 + · · ·+ ak−1λ
k−1 + λk).
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Example

Example

As in our earlier example , let T (x , y , z) = (x + y , y + z , z + x) and
let W be the cyclic subspace generated by v = (1,−1, 0). Then
dim(W ) = 2 and

v − T (v) + T 2(v) = (1,−1, 0)− (0,−1, 1) + (−1, 0, 1) = 0R3 .

By the theorem, pW (λ) = (−1)2(1− λ+ λ2).

But β = { (1,−1, 0), (0,−1, 1) } is a basis for W and

[TW ]β =
(
0 −1
1 1

)
.

Thus we also can compute that

pW (λ) = det
(−λ −1

1 1−λ

)
= λ2 − λ+ 1.
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Break Time

Time for a break and questions.
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Polynomials in T

Remark

Suppose that V is a vector space over F and T ∈ L(V ). Then if
p ∈ P(F) is given by p(t) = a0 + a1t + · · ·+ ant

n, then we get a
new operator p(T ) ∈ L(V ) by letting

p(T ) = a0IV + a1T + · · ·+ anT
n.

Note the appearance of IV in the “constant term”. As before, we
can think of this as T 0. For example, if p(t) = t2 − 1, then
p(T ) = T 2 − IV and p(T )(v) = T 2(v)− v . Of course, we can
play the same game with matrices A ∈ Mn×n(F). Then
p(A) = A2 − In. For example, if p(t) = t − λ, then the
characteristic polynomial of A is det(p(A)) = det(A− λIn).

Dana P. Williams Math 24: Winter 2021 Lecture 21



Killing T

Remark

If dim(V ) = n, then dim(L(V )) = n2. Therefore the set
{ IV ,T ,T 2, . . . ,T n2 } is linearly dependent and there are scalars
a0, . . . , an2 such that

a0IV + a1T + · · ·+ an2T
n2 = T0

Thus if we let p ∈ Pn2(F) be given by
p(t) = a0 + a1t + · · ·+ an2t

n2 , then

p(T ) = T0!

Of course, if A ∈ Mn×n(F), we can do the analogous thing and
find p ∈ Pn2(F) such that p(A) is the zero matrix. We now have
the tools to show that we can do the same thing with a polynomial
of degree n! In fact, we will show that the characteristic
polynomial always does the job.
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Cayley-Hamilton Theorem

Theorem (Cayley-Hamilton Theorem)

Suppose that V is a finite-dimensional vector space and that
T ∈ L(V ). If p(λ) is the characteristic polynomial of T , then
p(T ) = T0.

Remark

I the language of the text, we way that T “satisfies” its
characteristic polynomial.
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Proof

Proof.

It will suffice to show that p(T )(v) = 0 for all v ∈ V . Since p(T )
is a linear operator, this is automatic if v = 0V , so we assume
v 6= 0. We let W be the T -cyclic subspace generated by v and
suppose that dim(W ) = k. Then as in the proof of our theorem,
there are constants ai such that

a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + T k(v) = 0V .

Then we proved that the characteristic polynomial of TW is

pW (λ) = (−1)k(a0 + a1λ+ · · ·+ ak−1λ
k−1 + λk).

Therefore

pW (T )(v) = (−1)k
(
a0v + a1T (v) + · · ·+ ak−1T

k−1(v) + T k(v)
)

= 0V .
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Proof

Proof Continued.

We also proved that pW (λ) divides p(λ) so that
p(λ) = g(λ)pW (λ) for some g ∈ Pn(F). But then,

p(T )(v) = g(T )pW (T )(v) = g(T )
(
pW (T )(v)

)
= g(T )(0V ) = 0V .

This completes the proof of the theorem.

Corollary

If A ∈ Mn×n(F) and p(λ) is the characteristic polynomial of A,
then p(A) = O.

Sketch of the Proof.

By the theorem, p(LA) = T0. Consider [p(LA)]σ where σ is the
standard basis.
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Example

Example

Let A =
(
1 2
3 4

)
. Then its characteristic polynomial is

p(λ) = λ2 − 5λ− 2. Then

p(A) =
(
1 2
3 4

)2 − 5
(
1 2
3 4

)
− 2
(
1 0
0 1

)
=
(

7 10
15 22

)
−
(

5 10
15 20

)
−
(
2 0
0 2

)
=
(
0 0
0 0

)
as per the theorem.
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Enough

1 That is enough for today.
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