Math 24: Winter 2021 Lecture 21

Dana P. Williams

Dartmouth College

Wednesday, February 24, 2021

- **1** We should be recording.
- Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
- We will be skipping §5.3 and playing in §5.4 for a bit. Then on to §6.1.
- But first, are there any questions from last time?

Definition

A polynomial $p(\lambda) \in P(\mathbf{F})$ splits over \mathbf{F} if there are scalars $c, a_1, \ldots, a_n \in \mathbf{F}$ such that

$$p(\lambda) = c(\lambda - a_1) \cdots (\lambda - a_n)$$

Theorem

Suppose that V is a finite-dimensional vector space over **F** and that $T \in \mathcal{L}(V)$ is diagonalizable. Then the characteristic polynomial of T splits over **F**.

Definition

Suppose that V is a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If λ_0 is an eigenvalue for T, then the multiplicity of λ_0 is the largest positive integer k such that $(\lambda - \lambda_0)^k$ is a factor of the characteristic polynomial $p(\lambda)$ of T. We use the same terminology for the eigenvalues of a matrix.

Theorem

Suppose that V is a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If λ is an eigenvalue of T of multiplicity m, then

 $1 \leq \dim(E_{\lambda}) \leq m$

where E_{λ} is the λ -eigenspace for T.

Theorem

Suppose that V is a finite-dimensional vector space over **F** and $T \in \mathcal{L}(V)$ is a linear operator whose characteristic polynomial splits over **F**. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T with multiplicities m_1, \ldots, m_k , respectively.

- Then T is diagonalizable if and only if $\dim(E_{\lambda_i}) = m_i$ for $1 \le i \le k$.
- **2** If T is diagonalizable and β_i is a basis for E_{λ_i} for $1 \le i \le k$, then $\beta = \beta_1 \cup \cdots \cup \beta_k$ is a basis for V of eigenvectors for T.

Definition

Let T be a linear operator on a vector space V. A subspace W of V is called a T-invariant subspace, or just invariant, if $v \in W$ implies $T(v) \in W$. Alternatively, $T(W) \subset W$.

Example (Low Hanging Fruit)

- **1** $W = \{0_V\}.$
- W = V.
- W = R(T).
- W = N(T).
- $W = E_{\lambda}$ for any eigenvalue λ for T.

Solution

These are all relatively easy to check and I hope you will do so.

Example

Define $T \in \mathcal{L}(\mathbf{R}^3)$ by T(x, y, z) = (x + y, y + z, z + x) and let $W = \{(x, y, z) \in \mathbf{R}^3 : x + y + z = 0\}$. Then if $(a, b, c) \in W$, T(a, b, c) = (a + b, b + c, c + a) and

$$(a + b) + (b + c) + (c + a) = 2(a + b + c) = 0.$$

That is $T(a, b, c) \in W$ and W is an invariant subspace.

Definition

Suppose $T \in \mathcal{L}(V)$ and $v \in V$. Then

$$W = \text{Span}\{v, T(v), T^2(v), \dots\}$$

is called the T-cyclic subspace of V generated by v.

Remark

It is a homework exercise to verify that the T-cyclic subspace W generated by v is T-invariant and is contained in any invariant subspace that contains v.

Example

Let
$$T \in \mathcal{L}(\mathbf{R}^3)$$
 be given by $T(x, y, z) = (x + y, y + z, z + x)$ as
before. Let $v = (1, -1, 0)$. Then $T(v) = (0, -1, 1)$,
 $T^2(v) = (-1, 0, 1)$, $T^3(v) = (-1, 1, 0) = -v$. Therefore
 $W = \text{Span}\{v, T(v), T^2(v), \dots\}$
 $= \text{Span}\{(1, -1, 0), (0, -1, 1), (-1, 0, 1)\}$
 $= \text{Span}\{(1, -1, 0), (0, -1, 1)\}$
 $= \{(x, y, z) \in \mathbf{R}^3 : x + y + z = 0\}$

▶ Return

Time for a break. Questions?

Remark

Suppose that $T \in \mathcal{L}(V)$ and that W is a T-invariant subspace of V. Then we can define $T_W : W \to W$ by $T_W(v) = T(v)$ for all $v \in W$. It is a straightforward exercise to see that T_W is linear.

Definition

If $T \in \mathcal{L}(V)$ and if W is a T-invariant subspace of V, then the operator $T_W \in \mathcal{L}(W)$ defined above is called the restriction of T to W.

Remark

Note that since the restriction T_W is itself a bonafide linear operator, it has its own characteristic polynomial, eigenvalues, and eigenvectors. Our next result examines how these are related to those for T.

Theorem

Suppose that $T \in \mathcal{L}(V)$ for a finite-dimensional vector space V and that W is a T-invariant subspace of V. Then the characteristic polynomial $p_W(\lambda)$ of T_W divides the characteristic polynomial $p(\lambda)$ of T.

Proof.

Let $\gamma = \{v_1, \ldots, v_k\}$ be an ordered basis for W. Let $\beta = \{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ be an extension of γ to an ordered basis of V. Let

$$\mathsf{A} = [\mathsf{T}]_{\beta} = \big[[\mathsf{T}(\mathsf{v}_1)]_{\beta} \cdots [\mathsf{T}(\mathsf{v}_k)]_{\beta} [\mathsf{T}(\mathsf{v}_{k+1})]_{\beta} \cdots [\mathsf{T}(\mathsf{v}_n)]_{\beta} \big].$$

Proof Continued.

Since $T(v_i) \in W$ for $1 \le i \le k$, the corresponding coordinate vector $[T(v_i)]_{\beta}$ is of the form $(a_1, \ldots, a_k, 0, \cdots, 0)$. Hence

$$[T]_{\beta} = \left(\begin{array}{cc} [T_W]_{\gamma} & B\\ O & C \end{array}\right)$$

 $[T_W(v_i)]_{\gamma}$ n-k

Hence, using our cute lemma from last lecture,

$$p(\lambda) = \det([T]_{\beta} - \lambda I_n) = \det\begin{pmatrix} [T_W]_{\gamma} - \lambda I_k & B\\ O & C - \lambda I_{n-k} \end{pmatrix}$$
$$= \det([T]_{\beta} - \lambda I_n) \det(C - \lambda I_{n-k})$$
$$= p_W(\lambda)g(\lambda)$$

where $p_W(\lambda)$ is the characteristic polynomial of T_W and $g(\lambda)$ is a polynomial. Thus $p_W(\lambda)$ divides $p(\lambda)$ as claimed.

Theorem

Suppose that $T \in \mathcal{L}(V)$ for a finite-dimensional vector space V. Suppose that $v \in V$ is nonzero and let $W = \text{Span}\{v, T(v), ...\}$ be the T-cyclic subspace generated by v. Let $k = \dim(W)$. $\mathfrak{g} = \{v, T(v), ..., T^{k-1}(v)\}$ is an ordered basis for W. If

$$a_0v + a_1T(v) + \cdots + a_{k-1}T^{k-1}(v) + T^k(v) = 0_V,$$

then the characteristic polynomial of T_W is

$$p_W(\lambda) = (-1)^k (a_0 + a_1\lambda + \cdots a_{k-1}\lambda^{k-1} + \lambda^k.)$$

Proof.

Since $v \neq 0_V$, $\{v\}$ is linearly independent. Hence there is a largest $j \ge 1$ such that $\beta = \{v, T(v), \ldots, T^{j-1}(v)\}$ is linearly independent. (We interpret $T^0 = I_V$.) Such a j exists because V is finite dimensional. Let $Z = \text{Span}(\beta)$. Note that β is a basis for Z. We must have $T^j(v) \in Z$ —otherwise $\beta \cup \{T^j(v)\}$ would be linearly independent. I claim that Z is T-invariant. Let $w \in Z$. Then there are scalars a_i such that $w = a_0v + a_1T(v) + \cdots + a_{j-1}T^{j-1}(v)$. But then

$$T(w) = a_0 T(v) + \dots + a_{j-2} T^{j-1}(v) + a_{j-1} T^j(v).$$

Since $T^{j}(v) \in Z = \text{Span}(\beta)$, so it T(w). This proves the claim. Since $v \in Z$ and Z is T-invariant, it follows from homework that $W \subset Z$. But we clearly have $Z \subset W$. Hence W = Z and $\dim(W) = j$. Thus j = k and we have proved item (1).

Proof Continued.

(2) Let $\beta = \{v, T(v), \dots, T^{k-1}(v)\}$ be our ordered basis from the first part of the proof. Since $T^k(v) \in W$, there are unique scalars such that

$$a_0v + a_1T(v) + \cdots + a_{k-1}T^{k-1}(v) + T^k(v) = 0_V.$$

Then

$$[T_W]_{\beta} = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{k-1} \end{pmatrix}$$

You get to use induction to calculate that the characteristic polynomial of T_W is

$$p_W(\lambda) = (-1)^k (a_0 + \cdots + a_{k-1}\lambda^{k-1} + \lambda^k).$$

Example

Example

As in our earlier \bigcirc example, let T(x, y, z) = (x + y, y + z, z + x) and let W be the cyclic subspace generated by v = (1, -1, 0). Then $\dim(W) = 2$ and

$$v - T(v) + T^2(v) = (1, -1, 0) - (0, -1, 1) + (-1, 0, 1) = 0_{R^3}.$$

By the theorem, $p_W(\lambda) = (-1)^2(1 - \lambda + \lambda^2)$. But $\beta = \{ (1, -1, 0), (0, -1, 1) \}$ is a basis for W and $[T_W]_\beta = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$.

Thus we also can compute that

$$p_W(\lambda) = \det\left(\begin{smallmatrix} -\lambda & -1 \\ 1 & 1-\lambda \end{smallmatrix}
ight) = \lambda^2 - \lambda + 1.$$

Time for a break and questions.

Remark

Suppose that V is a vector space over **F** and $T \in \mathcal{L}(V)$. Then if $p \in P(\mathbf{F})$ is given by $p(t) = a_0 + a_1t + \cdots + a_nt^n$, then we get a new operator $p(T) \in \mathcal{L}(V)$ by letting

$$p(T) = a_0 I_V + a_1 T + \dots + a_n T^n.$$

Note the appearance of I_V in the "constant term". As before, we can think of this as T^0 . For example, if $p(t) = t^2 - 1$, then $p(T) = T^2 - I_V$ and $p(T)(v) = T^2(v) - v$. Of course, we can play the same game with matrices $A \in M_{n \times n}(\mathbf{F})$. Then $p(A) = A^2 - I_n$. For example, if $p(t) = t - \lambda$, then the characteristic polynomial of A is $\det(p(A)) = \det(A - \lambda I_n)$.

Killing T

Remark

If dim(V) = n, then dim($\mathcal{L}(V)$) = n^2 . Therefore the set $\{I_V, T, T^2, \ldots, T^{n^2}\}$ is linearly dependent and there are scalars a_0, \ldots, a_{n^2} such that

$$a_0I_V+a_1T+\cdots+a_{n^2}T^{n^2}=T_0$$

Thus if we let $p \in P_{n^2}(\mathbf{F})$ be given by $p(t) = a_0 + a_1t + \cdots + a_{n^2}t^{n^2}$, then

$$p(T) = T_0!$$

Of course, if $A \in M_{n \times n}(\mathbf{F})$, we can do the analogous thing and find $p \in P_{n^2}(\mathbf{F})$ such that p(A) is the zero matrix. We now have the tools to show that we can do the same thing with a polynomial of degree n! In fact, we will show that the characteristic polynomial always does the job.

Theorem (Cayley-Hamilton Theorem)

Suppose that V is a finite-dimensional vector space and that $T \in \mathcal{L}(V)$. If $p(\lambda)$ is the characteristic polynomial of T, then $p(T) = T_0$.

Remark

I the language of the text, we way that T "satisfies" its characteristic polynomial.

Proof.

It will suffice to show that p(T)(v) = 0 for all $v \in V$. Since p(T) is a linear operator, this is automatic if $v = 0_V$, so we assume $v \neq 0$. We let W be the T-cyclic subspace generated by v and suppose that dim(W) = k. Then as in the proof of our theorem, there are constants a_i such that

$$a_0v + a_1T(v) + \cdots + a_{k-1}T^{k-1}(v) + T^k(v) = 0_V.$$

Then we proved that the characteristic polynomial of T_W is

$$p_W(\lambda) = (-1)^k (a_0 + a_1\lambda + \cdots + a_{k-1}\lambda^{k-1} + \lambda^k).$$

Therefore

$$p_W(T)(v) = (-1)^k (a_0 v + a_1 T(v) + \dots + a_{k-1} T^{k-1}(v) + T^k(v))$$

$$= 0_{V}.$$

Proof Continued.

We also proved that $p_W(\lambda)$ divides $p(\lambda)$ so that $p(\lambda) = g(\lambda)p_W(\lambda)$ for some $g \in P_n(\mathbf{F})$. But then,

$$p(T)(v) = g(T)p_W(T)(v) = g(T)(p_W(T)(v)) = g(T)(0_V) = 0_V.$$

This completes the proof of the theorem.

Corollary

If $A \in M_{n \times n}(\mathbf{F})$ and $p(\lambda)$ is the characteristic polynomial of A, then p(A) = O.

Sketch of the Proof.

By the theorem, $p(L_A) = T_0$. Consider $[p(L_A)]_{\sigma}$ where σ is the standard basis.

Example

Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Then its characteristic polynomial is $p(\lambda) = \lambda^2 - 5\lambda - 2$. Then

$$p(A) = \left(\begin{smallmatrix} 1 & 2 \\ 3 & 4 \end{smallmatrix}\right)^2 - 5\left(\begin{smallmatrix} 1 & 2 \\ 3 & 4 \end{smallmatrix}\right) - 2\left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right)$$
$$= \left(\begin{smallmatrix} 7 & 10 \\ 15 & 22 \end{smallmatrix}\right) - \left(\begin{smallmatrix} 5 & 10 \\ 15 & 20 \end{smallmatrix}\right) - \left(\begin{smallmatrix} 2 & 0 \\ 0 & 2 \end{smallmatrix}\right)$$
$$= \left(\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix}\right)$$

as per the theorem.

1 That is enough for today.