
Math 24: Winter 2021
Lecture 22

Dana P. Williams

Dartmouth College

Friday, February 26, 2021

Dana P. Williams Math 24: Winter 2021 Lecture 22



Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 But first, are there any questions from last time?
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Review

Definition

Let T be a linear operator on a vector space V . A subspace W of
V is called a T -invariant subspace, or just invariant, if v ∈W
implies T (v) ∈W . Alternatively, T (W ) ⊂W .

Definition

Suppose T ∈ L(V ) and v ∈ V . Then

W = Span{ v ,T (v),T 2(v), . . . }

is called the T -cyclic subspace of V generated by v .

Remark

You showed W is the smallest T -invariant subspace containing v .
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Review

Definition

If T ∈ L(V ) and if W is a T -invariant subspace of V , then the
operator TW : W →W in L(W ) is called the restriction of T to
W .

Theorem

Suppose that T ∈ L(V ) for a finite-dimensional vector space V
and that W is a T -invariant subspace of V . Then the
characteristic polynomial pW (λ) of TW divides the characteristic
polynomial p(λ) of T .
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Review

Theorem

Suppose that T ∈ L(V ) for a finite-dimensional vector space V .
Suppose that v ∈ V is nonzero and let W = Span{ v ,T (v), . . . }
be the T -cyclic subspace generated by v . Let k = dim(W ).

1 β = { v ,T (v), . . . ,T k−1(v) } is an ordered basis for W .

2 If
a0v + a1T (v) + · · · ak−1T k−1(v) + T k(v) = 0V ,

then the characteristic polynomial of TW is

pW (λ) = (−1)k
(
a0 + a1λ+ · · · ak−1λk−1 + λk .

)
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Review

Theorem (Cayley-Hamilton Theorem)

Suppose that V is a finite-dimensional vector space and that
T ∈ L(V ). If p(λ) is the characteristic polynomial of T , then
p(T ) = T0.

Remark

I the language of the text, we way that T “satisfies” its
characteristic polynomial.

Corollary

If A ∈ Mn×n(F), and p(λ) is the characteristic polynomial of A,
then p(A) = O where O is the zero matrix.
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Motivation

Remark

I want to pause for a brief interlude to go back to the days of bliss
where vectors were just directed line segments in R2. This material
isn’t really part of the course, but I wanted to use is as motivation
for what is to come in Chapter 6.

Remark

If u = (u1, u2) ∈ R2, the we think of u as the directed line segment

from (0, 0) to (u1, u2) in the plane. Its length is ‖u‖ =
√

u21 + u22 .

Then vector addition and subtraction obey the “parallelogram
law”. (A picture is good here.)
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Law of Cosines

a

c
b

θ

Figure: The Law of Cosines: c2 = a2 + b2 − 2ab cos(θ)

We will also want to “recall” the law of cosines from high school
geometry. It is a generalization of the Pythagorean Theorem which
can be proved with the Pythagorean Theorem and some
trigonometry.
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Dot Products

u

v − u
v

θ

Now we let u and v be vectors and θ the angle between them.
Then the law of cosines gives us

‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos(θ).
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Angles

Thus if u = (u1, u2) and v = (v1, v2), then

(v1 − u1)2 + (v2 − u1)2 = u21 + u22 + v21 + v22 − 2‖u‖‖v‖ cos(θ).

A little algebra shows that −2(u1v1 + u2v2) = −2‖u‖‖v‖ cos(θ).
In Math 8 or our physics classes, we call u · v = u1v1 + u2v2 the
dot product of u and v and brag about the formula

cos(θ) =
u · v
‖u‖‖v‖

.

In paricular, u and v are perpendicular (shortly we will say
orthogonal) if u · v = 0.

Remark

The cool thing is that the innocuous dot product allows us to see
the geometry algebraically. We are going to want to do something
similar in general vector spaces over R or C.
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Complex Numbers

Remark

At this point, we are going to start making more use of the field C
of complex numbers. The wise student will be re-reading, ok
reading, Appendix D to refresh their memory. Today, let’s just
recall that C = { x + iy : x , y ∈ R } with the operations
(x + iy) + (x ′ + iy ′) = (x + x ′) + i(y + y ′) and
(x + iy)(x ′ + iy ′) = (xx ′ − yy ′) + i(xy ′ + x ′y). On cool tool is the
complex conjugate. If z = x + iy , the the complex conjugate of z
is z = x − iy . We have zz = |z |2 = x2 + y2. This is handy when
doing complex arithmetic:

1 + 2i

3 + 4i
=

1 + 2i

3 + 4i
· 3− 4i

3− 4i
=

3 + 8 + i(6− 4)

9 + 16
=

1

25
(11 + 2i).
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Break Time

Time for a break and some questions
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Inner Product Spaces

Definition

Suppose that V is a vector space over F where F is either R or C.
Then an inner product on V is a function 〈· , ·〉 : V × V → F such
that for all x , y , z ∈ V and all c ∈ F we have

1 〈cx + y , z〉 = c〈x , z〉+ 〈y , z〉,
2 〈y , x〉 = 〈x , y〉 where the bar is complex conjugation, and
3 〈x , x〉 > 0 if x 6= 0.

Remark

Item (1), says that for fixed z ∈ V , x 7→ 〈x , z〉 is linear from V to
F. If F = R, then the complex conjugate in item (2) goes away
and we just have 〈x , y〉 = 〈y , x〉.

Remark

Since we have only defined inner products over R and C, when
working with inner product, F will always be either R or C. Then
the understanding will be that, as in item (2) above, the complex
conjugate plays no role when F = R.

Dana P. Williams Math 24: Winter 2021 Lecture 22



The Example

Example (Standard Inner Product)

If V = Fn, then the standard inner product on Fn is given by

〈x , y〉 =
n∑

k=1

xkyk .

I will leave the verification that the standard inner product is an
inner product to you. Axioms (1) and (2) are fairly routine. For
item (3), note that

〈x , x〉 =
n∑

k=1

xkxk =
n∑

k=1

|xk |2.

Of course, in the real case, |xk |2 is just x2k .
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The Dot Product Again

Remark

If V = R2, then the standard inner product on R2 is just what we
called the dot product back in the day:
〈x , y〉 = x · y = x1y1 + x2y2.
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An Infinite-Dimensional Example

Example

Let V = C ([0, 1]) be the real vector-space of real-valued
continuous functions on [0, 1]. Then if f , g ∈ V , we can define

〈f , g〉 =

∫ 1

0
f (x)g(x) dx .

Checking axioms (1) and (2) is pretty straightforward. For axiom
(3), note that

〈f , g〉 =

∫ 1

0
|f (x)|2 dx > 0

if f is not the zero function.
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Complex Matrices

Remark

When working with real matrices, the transpose is a key tool. For
complex matrices, we often need to pay attention to the complex
structure which leads to the following definition.

Definition

If A ∈ Mm×n(F), then the conjugate transpose of A is the matrix
A∗ ∈ Mn×n(F) where (A∗)ij = Aji .

Example

Let A =
(

1 i 1−i
2+3i 0 2i

)
then A∗ =

(
1 2−3i
−i 0
1+i −2i

)
. Of course, if F = R

or all the entries of A are real, then A∗ = At .

Dana P. Williams Math 24: Winter 2021 Lecture 22



The Standard Inner Product

Remark

If V = Fn, then the standard inner product satisfies 〈x , y〉 = y∗x
where as usual we view x ∈ Fn as a 1× n-matrix if we feel like it.
Then we can go further as the next example shows.

Example

Let V = Mn×n(F). Then we can define 〈A , B〉 = tr(B∗A) where
tr(A) =

∑n
k=1 Akk . To see that this is an inner product on

Mn×n(F), start with

〈A + rB , C 〉 = tr(C ∗(A + rB)) = tr(C ∗A + rC ∗B)

= tr(C ∗A) + k tr(C ∗B) = 〈A , C 〉+ k〈B , C 〉.

Thus axiom (1) holds. Axiom (2) is not so hard to check, and

〈A , A〉 = tr(A∗A) =
n∑

j=1

(A∗A)jj =
n∑

j=1

n∑
k=1

(A∗)jkAkj

=
n∑

j=1

n∑
k=1

|Akj |2

which is > 0 if A 6= O.
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Inner Product Spaces

Definition

A vector space V endowed with a given inner product is called and
inner product space.

Example

For example, Mn×n(F) endowed with the inner product from the
previous slide is called the Frobenius inner product space and we
will assume that Mn×n(F) is this inner product space unless
otherwise noted. Similarly, unless stated otherwise, we will always
endow Fn with the standard inner product.
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Inner Products

Theorem

Suppose that V is an inner product space. Then for all x , y , z ∈ V
and c ∈ F we have

1 〈x , cy + z〉 = c〈x , y〉+ 〈x , z〉,
2 〈x , 0V 〉 = 0 = 〈0V , x〉,
3 〈x , x〉 = 0 if and only if x = 0V , and

4 if 〈x , y〉 = 〈x , z〉 for all x ∈ V , then y = z .

Remark

Item (1) says that for fixed x , y 7→ 〈x , y〉 is conjugate linear. Of
course, if F = R, then y 7→ 〈x , y〉 is actually linear. I will leave
the proof of this theorem for homework.
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Length

Definition

If V is an inner product space and x ∈ V , then we call
‖x‖ =

√
〈x , x〉 the norm (or length) of x .

Theorem

Let V be an inner product space. Then for all x , y ∈ V and c ∈ F,
we have

1 ‖cx‖ = |c |‖x‖,
2 ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0V ,

3 (Cauchy-Schwarz Inequality) |〈x , y〉| ≤ ‖x‖‖y‖, and

4 (Triangle Inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof.

Items (1) and (2) are straightforward and I’ll leave those to you.
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Proof

Proof Continued.

(3) If y = 0V , the inequality is immediate. So we assume y 6= 0V .
Then for all c ∈ F,

0 ≤ 〈x − cy , x − cy〉 = 〈x , x − cy〉+ c〈y , x − cy〉
= 〈x , x〉 − c〈x , y〉+ c〈y , x〉 − cc〈y , y〉. (‡)

Now let c = 〈x ,y〉
〈y ,y〉 . Then c〈x , y〉, c〈y , x〉, and cc〈y , y〉 are all

equal to

〈x , y〉〈y , x〉
〈y , y〉

=
|〈x , y〉|2

‖y‖2
.

Plugging into (‡) gives us

0 ≤ ‖x‖2 − |〈x , y〉|
2

‖y‖2
.

And item (3) follows after multiplying through by ‖y‖2 and taking
square roots.
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Proof

Proof Continued.

(4) For the triangle inequality, we use item (3):

‖x + y‖2 = 〈x + y , x + y〉 = 〈x , x〉+ 〈x , y〉+ 〈y , x〉+ 〈y , y〉

= ‖x‖2 + 2 Re
(
〈x , y〉

)
+ ‖y‖2

≤ ‖x‖2 + 2|〈x , y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

=
(
‖x‖+ ‖y‖

)2
Now take square roots.
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Orthogonality

Definition

Let V be an inner product space. They x , y ∈ V are orthogonal
(or perpendicular) if 〈x , y〉 = 0. A subset S ⊂ V is called
orthogonal if any two distinct vectors in S are orthogonal. A vector
x ∈ V is called unit vector if ‖x‖ = 1. A subset S ⊂ V is called
orthonormal if it is an orthogonal set consisting of unit vectors.
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Enough

1 That is enough for today.
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