Math 24: Winter 2021 Lecture 23

Dana P. Williams
Dartmouth College

Monday, March 1, 2021

Let's Get Started

(1) We should be recording.
(2) It is more fun for me if you turn your video on.
(3) The final will be administered in a manner similar to the prelim and midterm exams. My plan is to release it on the first day of the final period, Saturday, March 13, at 8am EST, and require it to be completed by Monday, March 15 at 10pm EST. There will be what I hope is a comfortable window to complete the exam.
(9) The final will cover the entire course and I hope to get to parts of Section 6.6. We probably will not be covering all of sections $6.2-6.6$. You will only be responsible for what we conver in lecture. More details later.
(5) But first, are there any questions from last time?

Review

Definition

Suppose that V is a vector space over \mathbf{F} where \mathbf{F} is either \mathbf{R} or \mathbf{C}. Then an inner product on V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbf{F}$ such that for all $x, y, z \in V$ and all $c \in \mathbf{F}$ we have
(1) $\langle c x+y, z\rangle=c\langle x, z\rangle+\langle y, z\rangle$,
(2) $\langle y, x\rangle=\overline{\langle x, y\rangle}$ where the bar is complex conjugation, and
(3) $\langle x, x\rangle>0$ if $x \neq 0$.

Example (Standard Inner Product)

If $V=\mathbf{F}^{n}$, then the standard inner product on \mathbf{F}^{n} is given by

$$
\langle x, y\rangle=\sum_{k=1}^{n} x_{k} \overline{y_{k}} .
$$

This is the standard dot product in \mathbf{R}^{2} and \mathbf{R}^{3}.

Review

Definition

If $A \in M_{m \times n}(\mathbf{F})$, then the conjugate transpose of A is the matrix $A^{*} \in M_{n \times n}(\mathbf{F})$ where $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$. Of course $A^{*}=A^{t}$ if $\mathbf{F}=\mathbf{R}$.

Theorem

Suppose that V is an inner product space. Then for all $x, y, z \in V$ and $c \in \mathbf{F}$ we have
(1) $\langle x, c y+z\rangle=\bar{c}\langle x, y\rangle+\langle x, z\rangle$,
(2) $\left\langle x, 0_{v}\right\rangle=0=\left\langle 0_{v}, x\right\rangle$,
(3) $\langle x, x\rangle=0$ if and only if $x=0 v$, and
(9) if $\langle x, y\rangle=\langle x, z\rangle$ for all $x \in V$, then $y=z$.

Review

Definition

If V is an inner product space and $x \in V$, then we call $\|x\|=\sqrt{\langle x, x\rangle}$ the norm (or length) of x.

Theorem

Let V be an inner product space. Then for all $x, y \in V$ and $c \in \mathbf{F}$, we have
(1) $\|c x\|=|c|\|x\|$,
(2) $\|x\| \geq 0$ and $\|x\|=0$ if and only if $x=0 v$,
(3) (Cauchy-Schwarz Inequality) $|\langle x, y\rangle| \leq\|x\|\|y\|$, and
(9) (Triangle Inequality) $\|x+y\| \leq\|x\|+\|y\|$.

Orthogonality

Definition

Let V be an inner product space. They $x, y \in V$ are orthogonal (or perpendicular) if $\langle x, y\rangle=0$. A subset $S \subset V$ is called orthogonal if any two distinct vectors in S are orthogonal. A vector $x \in V$ is called unit vector if $\|x\|=1$. A subset $S \subset V$ is called orthonormal if it is an orthogonal set consisting of unit vectors.

Remark

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a finite subset of an inner product space V. Then S is an orthonormal set if and only if

$$
\left\langle v_{i}, v_{j}\right\rangle= \begin{cases}1 & \text { if } i=j, \text { and } \\ 0 & \text { if } i \neq j\end{cases}
$$

Only So Much Room

Proposition

Suppose that V is an inner product space and $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthogonal set of nonzero vectors. Then S is linearly independent.

Proof.

Suppose that $a_{1} v_{1}+\cdots+a_{n} v_{n}=0_{v}$. We need to see that this forces $a_{k}=0$ for all k.
But for all k,

$$
\begin{aligned}
0 & =\left\langle 0_{v}, v_{k}\right\rangle=\left\langle a_{1} v_{1}+\cdots+a_{n} v_{n}, v_{k}\right\rangle \\
& =a_{1}\left\langle v_{1}, v_{k}\right\rangle+\cdots+a_{n}\left\langle v_{n}, v_{k}\right\rangle \\
& =a_{k}\left\langle v_{k}, v_{k}\right\rangle=a_{k}\left\|v_{k}\right\|^{2} .
\end{aligned}
$$

Since $v_{k} \neq 0_{V},\left\|v_{k}\right\| \neq 0$. Thus $a_{k}=0$.

Even Better

Proposition

Suppose that $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthogonal set of nonzero vectors in an inner product space V. If $v \in \operatorname{Span}(S)$, then

$$
v=\sum_{k=1}^{n} \frac{\left\langle v, v_{k}\right\rangle}{\left\|v_{k}\right\|^{2}} \cdot v_{k}
$$

In particular, if S is an orthonormal subset and $v \in \operatorname{Span}(S)$, then

$$
v=\sum_{k=1}^{n}\left\langle v, v_{k}\right\rangle \cdot v_{k}
$$

Proof

Proof.

By the previous proposition, S is a basis for $\operatorname{Span}(S)$. Thus there are unique scalars a_{j} such that $v=\sum_{j=1}^{n} a_{j} v_{j}$. Then just as on the previous slide,

$$
\left\langle v, v_{k}\right\rangle=a_{k} \cdot\left\langle v_{k}, v_{k}\right\rangle,
$$

and the first equation follows. If S is orthonormal, then $\left\|v_{k}\right\|=1$ for all k. Hence the second assertion follows as well.

Orthogonal and Orthonormal Bases

Definition

If V is a finite-dimensional inner product space, then we call an ordered basis β an orthogonal basis if β is also an orthogonal set. If β is also orthonormal, we call β and orthonormal basis.

Example (Only The Best)

The standard ordered basis for \mathbf{F}^{n} is an orthonormal basis.

Example

Example

It is not hard to see that $\gamma=\{(1,1,1),(1,-1,0),(1,1,-2)\}$ is an orthogonal subset of \mathbf{R}^{3}. But then γ must be linearly independent. Since γ has three elements, it must be a basis-and hence an orthogonal basis. To get an orthonormal basis we just normalize: $\beta=\left\{u_{1}, u_{2}, u_{3}\right\}=\left\{\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(1,-1,0), \frac{1}{\sqrt{6}}(1,1,-2)\right\}$.
Let $v=(1,2,3)$. Then $v=a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}$. Then we have

$$
\begin{aligned}
a_{1}=\left\langle v, u_{1}\right\rangle=\frac{6}{\sqrt{3}}, \quad a_{2}=\left\langle v, u_{2}\right\rangle=- & \frac{1}{\sqrt{2}} \\
& a_{3}=\left\langle v, u_{3}\right\rangle=-\frac{3}{\sqrt{6}}
\end{aligned}
$$

Thus

$$
(1,2,3)=2(1,1,1)-\frac{1}{2}(1,-1,0)-\frac{1}{2}(1,1,-2) .
$$

Break Time

Time for a break and some questions.

Getting An Orthonormal Basis

Example

Suppose that V is an inner product space and that W is a subspace with a basis
$\gamma=\left\{w_{1}, w_{2}\right\}$. We want an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for W.

Example (Continued)

The idea is to let $v_{1}=w_{1}$ and then set $v_{2}=w_{2}-c w_{1}$ and choose c such that $\left\langle v_{2}, v_{1}\right\rangle=0$. Then we want

$$
0=\left\langle v_{2}, v_{1}\right\rangle=\left\langle w_{2}-c w_{1}, w_{1}\right\rangle=\left\langle w_{2}, w_{1}\right\rangle-c\left\langle w_{1}, w_{1}\right\rangle
$$

or

$$
c=\frac{\left\langle w_{2}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} \quad \text { and } \quad v_{2}=w_{2}-\frac{\left\langle w_{2}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} \cdot w_{1}
$$

Example

Example

Let $W=\left\{(x, y, z) \in \mathbf{R}^{3}: x-2 y+2 z=0\right\}$. Our usual techniques produce a basis $\gamma=\left\{w_{1}, w_{2}\right\}=\{(2,1,0),(-2,0,1)\}$. If we want an orthogonal basis $\left\{v_{1}, v_{2}\right\}$, then we let $v_{1}=w_{1}$ and

$$
v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=(-2,0,1)-\frac{-4}{5}(2,1,0)=\left(-\frac{2}{5}, \frac{4}{5}, 1\right)
$$

Thus $\beta=\{(2,1,0),(-2,4,5)\}$ is an orthogonal basis for W and $\beta^{\prime}=\left\{\frac{1}{\sqrt{5}}(2,1,0), \frac{1}{3 \sqrt{5}}(-2,4,5)\right\}$ is an orthonormal basis.

Gram-Schmidt Orthogonalization

Theorem (Gram-Schmidt Orthogonalization Process)

Let V be an inner product space and $\gamma=\left\{w_{1}, \ldots, w_{n}\right\}$ a basis for a subspace W. If we define $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ by

$$
v_{k}= \begin{cases}w_{1} & \text { if } k=1, \text { and } \\ w_{k}-\sum_{j=1}^{k-1} \frac{\left\langle w_{k}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j} & \text { for } 2 \leq k \leq n,\end{cases}
$$

then β is an orthogonal basis for W.

- Return

Proof

Proof.

We proceed by induction on n. If $n=1$ and $\gamma=\left\{w_{1}\right\}$, then let $v_{1}=w_{1}$ and $\beta=\left\{v_{1}\right\}$ clearly works.
Now we assume that result if we are given $n-1$ vectors in γ and consider a basis $\gamma=\left\{w_{1}, \ldots, w_{n}\right\}$ for W.
By the inductive hypothesis applied to $\gamma^{\prime}=\left\{w_{1}, \ldots, w_{n-1}\right\}$ and $W^{\prime}=\operatorname{Span}\left(\gamma^{\prime}\right), \beta^{\prime}=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is an orthogonal basis for W^{\prime}.

If $v_{n}=0_{V}$, then $w_{n} \in \operatorname{Span}\left(\beta^{\prime}\right)=\operatorname{Span}\left(\gamma^{\prime}\right)$ which contradicts the linear independence of γ. (See the formula).
Since $\sum_{j=1}^{n-1} \frac{\left\langle w_{n}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j} \in \operatorname{Span}\left(\beta^{\prime}\right)=\operatorname{Span}\left(\gamma^{\prime}\right), v_{n}$ is a non-zero vector in $\operatorname{Span}(\gamma)=W$.

Proof

Proof Continued.

For $1 \leq k \leq n-1$,

$$
\begin{aligned}
\left\langle v_{n}, v_{k}\right\rangle & =\left\langle w_{n}, v_{k}\right\rangle-\sum_{j=1}^{n-1} \frac{\left\langle w_{n}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}}\left\langle v_{j}, v_{k}\right\rangle \\
& =\left\langle w_{n}, v_{k}\right\rangle-\frac{\left\langle w_{n}, v_{k}\right\rangle}{\left\|v_{k}\right\|^{2}}\left\langle v_{k}, v_{k}\right\rangle \\
& =0
\end{aligned}
$$

Since $\beta^{\prime}=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is an orthogonal set of nonzero vectors, the above shows that $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is also an orthogonal set of nonzero vectors. Hence β is linearly independent in W. Since $\operatorname{dim}(W)=n, \beta$ must be an orthogonal basis as required.

Example

Example

Let $V=\mathrm{P}_{2}(\mathbf{R})$ and $\sigma=\left\{1, x, x^{2}\right\}$ its standard basis. It is not hard to see that

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

is an inner product on $P_{2}(\mathbf{R})$. We want to find an orthogonal basis. We can use Gram-Schmidt. Thus in our formula, $\left\{w_{1}, w_{2}, w_{3}\right\}=\left\{1, x, x^{2}\right\}$ We let $v_{1}=w_{1}$. Then $\left\|v_{1}\right\|^{2}=\left\langle v_{1}, v_{1}\right\rangle=1$ and $\left\langle x, v_{1}\right\rangle=\int_{0}^{1} x d x=\frac{1}{2}$. Thus

$$
v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}=x-\frac{1}{2} .
$$

Example

Example (Continued)

Now $\left\|v_{2}\right\|^{2}=\left\langle v_{2}, v_{2}\right\rangle=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=\int_{-\frac{1}{2}}^{\frac{1}{2}} x^{2} d x=\frac{1}{12}$. Also $\left\langle w_{3}, v_{2}\right\rangle=\int_{0}^{1} x^{2}\left(x-\frac{1}{2}\right) d x=\frac{1}{12}$. Therefore

$$
\begin{aligned}
v_{3} & =w_{3}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \\
& =x^{2}-(1)\left(x-\frac{1}{2}\right)-\frac{1}{3}=x^{2}-x+\frac{1}{6} .
\end{aligned}
$$

Therefore $\beta=\left\{1, x-\frac{1}{2}, x^{2}-x+\frac{1}{6}\right\}$ is an orthogonal basis for $\mathrm{P}_{2}(\mathbf{R})$. To get an orthonormal basis, we need to normalize: $\left\{1,2 \sqrt{3}\left(x-\frac{1}{2}\right), 6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)\right\}$ where I have hid the details to protect the innocent. In Example 5 in the text, the authors work the same example, but equip $\mathrm{P}_{2}(\mathbf{R})$ with the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$. This is therefore a different inner product space and hence the results are quite different.

An Important Corollary

Theorem

If V is a finite-dimensional inner product space with $\operatorname{dim}(V)=n$, then V has an orthonormal basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. If $v \in V$, then

$$
v=\sum_{j=1}^{n}\left\langle v, v_{j}\right\rangle v_{j} .
$$

Proof.

We can let $\gamma=\left\{w_{1}, \ldots, w_{n}\right\}$ be any ordered basis for V. Then we can apply the Gram-Schmidt process to obtain an orthogonal basis $\beta^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$. Then we can normalize to get β. The formula (\dagger) follows immediately from (\ddagger) in our earlier

Fourier Coefficients

Definition

If β is an orthonormal subset of an inner product space V (possibly infinite dimensional), then the scalars $\langle v, w\rangle$ where $w \in \beta$ are called the Fourier coefficients of v relative to β.

Remark

For us in Math 24, this is just a fancy name. In our standard setting where β is an orthonormal basis for V, they are just the magic scalars that appear in (\dagger) on the previous

The Matrix of a Linear Operator

Corollary

Let V be a finite-dimensional inner product space and let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis for V. If $T \in \mathcal{L}(V)$ is a linear operator, then $[T]_{\beta}=\left(A_{i j}\right)$ where for all $1 \leq i, j \leq n$

$$
A_{i j}=\left\langle T\left(v_{j}\right), v_{i}\right\rangle
$$

Proof.

We have $T\left(v_{j}\right)=\sum_{j=1}^{n}\left\langle T\left(v_{j}\right), v_{i}\right\rangle v_{i}$. This means that $\left[T\left(v_{j}\right)\right]_{\beta}=\left(\left\langle T\left(v_{j}\right), v_{1}\right\rangle, \ldots,\left\langle T\left(v_{j}\right), v_{n}\right\rangle\right)$ and $A_{i j}=\left\langle T\left(v_{j}\right), v_{i}\right\rangle$ as claimed.

Remark

It is worth paying attention to the order of the indicies in the formula (*). It will be a useful formula for us, but not if you remember it incorrectly.

Enough

- That is enough for today.

