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Let’s Get Started

1 We should be recording.

2 It is more fun for me if you turn your video on.

3 The final will be administered in a manner similar to the
prelim and midterm exams. My plan is to release it on the
first day of the final period, Saturday, March 13, at 8am EST,
and require it to be completed by Monday, March 15 at 10pm
EST. There will be what I hope is a comfortable window to
complete the exam.

4 The final will cover the entire course and I hope to get to
parts of Section 6.6. We probably will not be covering all of
sections 6.2 – 6.6. You will only be responsible for what we
conver in lecture. More details later.

5 But first, are there any questions from last time?
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Review

Definition

Suppose that V is a vector space over F where F is either R or C.
Then an inner product on V is a function 〈· , ·〉 : V × V → F such
that for all x , y , z ∈ V and all c ∈ F we have

1 〈cx + y , z〉 = c〈x , z〉+ 〈y , z〉,
2 〈y , x〉 = 〈x , y〉 where the bar is complex conjugation, and

3 〈x , x〉 > 0 if x 6= 0.

Example (Standard Inner Product)

If V = Fn, then the standard inner product on Fn is given by

〈x , y〉 =
n∑

k=1

xkyk .

This is the standard dot product in R2 and R3.
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Review

Definition

If A ∈ Mm×n(F), then the conjugate transpose of A is the matrix
A∗ ∈ Mn×n(F) where (A∗)ij = Aji . Of course A∗ = At if F = R.

Theorem

Suppose that V is an inner product space. Then for all x , y , z ∈ V
and c ∈ F we have

1 〈x , cy + z〉 = c〈x , y〉+ 〈x , z〉,
2 〈x , 0V 〉 = 0 = 〈0V , x〉,
3 〈x , x〉 = 0 if and only if x = 0V , and

4 if 〈x , y〉 = 〈x , z〉 for all x ∈ V , then y = z .
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Review

Definition

If V is an inner product space and x ∈ V , then we call
‖x‖ =

√
〈x , x〉 the norm (or length) of x .

Theorem

Let V be an inner product space. Then for all x , y ∈ V and c ∈ F,
we have

1 ‖cx‖ = |c |‖x‖,
2 ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0V ,

3 (Cauchy-Schwarz Inequality) |〈x , y〉| ≤ ‖x‖‖y‖, and

4 (Triangle Inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖.
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Orthogonality

Definition

Let V be an inner product space. They x , y ∈ V are orthogonal
(or perpendicular) if 〈x , y〉 = 0. A subset S ⊂ V is called
orthogonal if any two distinct vectors in S are orthogonal. A vector
x ∈ V is called unit vector if ‖x‖ = 1. A subset S ⊂ V is called
orthonormal if it is an orthogonal set consisting of unit vectors.

Remark

Let S = { v1, . . . , vn } be a finite subset of an inner product space
V . Then S is an orthonormal set if and only if

〈vi , vj〉 =

{
1 if i = j , and

0 if i 6= j .
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Only So Much Room

Proposition

Suppose that V is an inner product space and S = { v1, . . . , vn } is
an orthogonal set of nonzero vectors. Then S is linearly
independent.

Proof.

Suppose that a1v1 + · · ·+ anvn = 0V . We need to see that this
forces ak = 0 for all k .

But for all k,

0 = 〈0V , vk〉 = 〈a1v1 + · · ·+ anvn , vk〉
= a1〈v1 , vk〉+ · · ·+ an〈vn , vk〉
= ak〈vk , vk〉 = ak‖vk‖2.

Since vk 6= 0V , ‖vk‖ 6= 0. Thus ak = 0.
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Even Better

Proposition

Suppose that S = { v1, . . . , vn } is an orthogonal set of nonzero
vectors in an inner product space V . If v ∈ Span(S), then

v =
n∑

k=1

〈v , vk〉
‖vk‖2

· vk .

In particular, if S is an orthonormal subset and v ∈ Span(S), then

v =
n∑

k=1

〈v , vk〉 · vk . (‡)

Return
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Proof

Proof.

By the previous proposition, S is a basis for Span(S). Thus there
are unique scalars aj such that v =

∑n
j=1 ajvj . Then just as on the

previous slide,
〈v , vk〉 = ak · 〈vk , vk〉,

and the first equation follows. If S is orthonormal, then ‖vk‖ = 1
for all k. Hence the second assertion follows as well.
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Orthogonal and Orthonormal Bases

Definition

If V is a finite-dimensional inner product space, then we call an
ordered basis β an orthogonal basis if β is also an orthogonal set.
If β is also orthonormal, we call β and orthonormal basis.

Example (Only The Best)

The standard ordered basis for Fn is an orthonormal basis.
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Example

Example

It is not hard to see that γ = { (1, 1, 1), (1,−1, 0), (1, 1,−2) } is an
orthogonal subset of R3. But then γ must be linearly independent.
Since γ has three elements, it must be a basis—and hence an
orthogonal basis. To get an orthonormal basis we just normalize:
β = { u1, u2, u3 } = { 1√

3
(1, 1, 1), 1√

2
(1,−1, 0), 1√

6
(1, 1,−2) }.

Let v = (1, 2, 3). Then v = a1u1 + a2u2 + a3u3. Then we have

a1 = 〈v , u1〉 =
6√
3
, a2 = 〈v , u2〉 = − 1√

2
,

a3 = 〈v , u3〉 = − 3√
6

Thus

(1, 2, 3) = 2(1, 1, 1)− 1

2
(1,−1, 0)− 1

2
(1, 1,−2).
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Break Time

Time for a break and some questions.
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Getting An Orthonormal Basis

w1 = v1

w2

v2

cw1

Example

Suppose that V is an inner
product space and that W is a
subspace with a basis
γ = {w1,w2 }. We want an
orthogonal basis { v1, v2 } for W .

Example (Continued)

The idea is to let v1 = w1 and then set v2 = w2 − cw1 and choose
c such that 〈v2 , v1〉 = 0. Then we want

0 = 〈v2 , v1〉 = 〈w2 − cw1 , w1〉 = 〈w2 , w1〉 − c〈w1 , w1〉

or

c =
〈w2 , w1〉
‖w1‖2

and v2 = w2 −
〈w2 , w1〉
‖w1‖2

· w1.
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Example

Example

Let W = { (x , y , z) ∈ R3 : x − 2y + 2z = 0 }. Our usual
techniques produce a basis γ = {w1,w2 } = { (2, 1, 0), (−2, 0, 1) }.
If we want an orthogonal basis { v1, v2 }, then we let v1 = w1 and

v2 = w2 −
〈w2 , v1〉
‖v1‖2

v1 = (−2, 0, 1)− −4

5
(2, 1, 0) = (−2

5
,

4

5
, 1)

Thus β = { (2, 1, 0), (−2, 4, 5) } is an orthogonal basis for W and
β′ = { 1√

5
(2, 1, 0), 1

3
√
5

(−2, 4, 5) } is an orthonormal basis.
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Gram-Schmidt Orthogonalization

Theorem (Gram-Schmidt Orthogonalization Process)

Let V be an inner product space and γ = {w1, . . . ,wn } a basis for
a subspace W . If we define β = { v1, . . . , vn } by

vk =


w1 if k = 1, and

wk −
k−1∑
j=1

〈wk , vj〉
‖vj‖2

vj for 2 ≤ k ≤ n,

then β is an orthogonal basis for W .

Return
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Proof

Proof.

We proceed by induction on n. If n = 1 and γ = {w1 }, then let
v1 = w1 and β = { v1 } clearly works.

Now we assume that result if we are given n − 1 vectors in γ and
consider a basis γ = {w1, . . . ,wn } for W .

By the inductive hypothesis applied to γ′ = {w1, . . . ,wn−1 } and
W ′ = Span(γ′), β′ = { v1, . . . , vn−1 } is an orthogonal basis for
W ′.

If vn = 0V , then wn ∈ Span(β′) = Span(γ′) which contradicts the
linear independence of γ. (See the formula ).

Since
∑n−1

j=1
〈wn,vj 〉
‖vj‖2

vj ∈ Span(β′) = Span(γ′), vn is a non-zero

vector in Span(γ) = W .
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Proof

Proof Continued.

For 1 ≤ k ≤ n − 1,

〈vn , vk〉 = 〈wn , vk〉 −
n−1∑
j=1

〈wn , vj〉
‖vj‖2

〈vj , vk〉

= 〈wn , vk〉 −
〈wn , vk〉
‖vk‖2

〈vk , vk〉

= 0.

Since β′ = { v1, . . . , vn−1 } is an orthogonal set of nonzero vectors,
the above shows that β = { v1, . . . , vn } is also an orthogonal set of
nonzero vectors. Hence β is linearly independent in W . Since
dim(W ) = n, β must be an orthogonal basis as required.
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Example

Example

Let V = P2(R) and σ = { 1, x , x2 } its standard basis. It is not
hard to see that

〈f , g〉 =

∫ 1

0
f (t)g(t) dt

is an inner product on P2(R). We want to find an orthogonal
basis. We can use Gram-Schmidt. Thus in our formula,
{w1,w2,w3 } = { 1, x , x2 } We let v1 = w1. Then

‖v1‖2 = 〈v1 , v1〉 = 1 and 〈x , v1〉 =
∫ 1
0 x dx = 1

2 . Thus

v2 = w2 −
〈w2 , v1〉
〈v1 , v1〉

v1 = x − 1

2
.
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Example

Example (Continued)

Now ‖v2‖2 = 〈v2 , v2〉 =
∫ 1
0 (x − 1

2)2 dx =
∫ 1

2

− 1
2

x2 dx = 1
12 . Also

〈w3 , v2〉 =
∫ 1
0 x2(x − 1

2) dx = 1
12 . Therefore

v3 = w3 −
〈w3 , v2〉
〈v2 , v2〉

v2 −
〈w3 , v1〉
〈v1 , v1〉

v1

= x2 − (1)(x − 1

2
)− 1

3
= x2 − x +

1

6
.

Therefore β = { 1, x − 1
2 , x

2 − x + 1
6 } is an orthogonal basis for

P2(R). To get an orthonormal basis, we need to normalize:
{ 1, 2

√
3(x − 1

2), 6
√

5(x2 − x + 1
6) } where I have hid the details to

protect the innocent. In Example 5 in the text, the authors work
the same example, but equip P2(R) with the inner product

〈f , g〉 =
∫ 1
−1 f (x)g(x) dx . This is therefore a different inner

product space and hence the results are quite different.
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An Important Corollary

Theorem

If V is a finite-dimensional inner product space with dim(V ) = n,
then V has an orthonormal basis β = { v1, . . . , vn }. If v ∈ V , then

v =
n∑

j=1

〈v , vj〉vj . (†)

Return

Proof.

We can let γ = {w1, . . . ,wn } be any ordered basis for V . Then we
can apply the Gram-Schmidt process to obtain an orthogonal basis
β′ = { v ′1, . . . , v ′n }. Then we can normalize to get β. The formula
(†) follows immediately from (‡) in our earlier proposition .
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Fourier Coefficients

Definition

If β is an orthonormal subset of an inner product space V (possibly
infinite dimensional), then the scalars 〈v , w〉 where w ∈ β are
called the Fourier coefficients of v relative to β.

Remark

For us in Math 24, this is just a fancy name. In our standard
setting where β is an orthonormal basis for V , they are just the
magic scalars that appear in (†) on the previous slide .
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The Matrix of a Linear Operator

Corollary

Let V be a finite-dimensional inner product space and let
β = { v1, . . . , vn } be an orthonormal basis for V . If T ∈ L(V ) is a
linear operator, then [T ]β = (Aij) where for all 1 ≤ i , j ≤ n

Aij = 〈T (vj) , vi 〉. (∗)

Proof.

We have T (vj) =
∑n

j=1〈T (vj) , vi 〉vi . This means that

[T (vj)]β =
(
〈T (vj) , v1〉, . . . , 〈T (vj) , vn〉

)
and Aij = 〈T (vj) , vi 〉

as claimed.

Remark

It is worth paying attention to the order of the indicies in the
formula (∗). It will be a useful formula for us, but not if you
remember it incorrectly.
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Enough

That is enough for today.
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