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Let’s Get Started

1 We should be recording.
2 The final will be administered in a manner similar to the

prelim and midterm exams. I will release the final on the first
day of the final period, Saturday, March 13, at 8am EST, and
require it to be completed by Monday, March 15 at 10pm
EST. Our assign exam period is Sunday at 11:30am, but you
can work it any time during the above window. I will
announce the time period for the exam next week, but at the
moment I am thinking six hours so that everyone should have
more than enough time to work the exam, but not so much
that our exam cuts into your time for your other exams.

3 The final will cover the entire course and I hope to get to
parts of Section 6.6. We probably will not be covering all of
sections 6.2 – 6.6. You will only be responsible for what we
cover in lecture. More details later.

4 But first, are there any questions from last time?
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Review

Proposition

Suppose that V is an inner product space and S = { v1, . . . , vn } is
an orthogonal set of nonzero vectors. Then S is linearly
independent.

Proposition

Suppose that S = { v1, . . . , vn } is an orthogonal set of nonzero
vectors in an inner product space V . If v ∈ Span(S), then

v =
n∑

k=1

〈v , vk〉
‖vk‖2

· vk .

In particular, if S is an orthonormal subset and v ∈ Span(S), then

v =
n∑

k=1

〈v , vk〉 · vk .
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Review

Definition

If V is a finite-dimensional inner product space, then we call an
ordered basis β an orthogonal basis if β is also an orthogonal set.
If β is also orthonormal, we call β and orthonormal basis.

Example (Only The Best)

The standard ordered basis for Fn is an orthonormal basis (which
respect to the standard inner product on Fn).

Theorem (Gram-Schmidt Orthogonalization Process)

Let V be an inner product space and γ = {w1, . . . ,wn } a basis for
a subspace W . If we define β = { v1, . . . , vn } by

vk =


w1 if k = 1, and

wk −
k−1∑
j=1

〈wk , vj〉
‖vj‖2

vj for 2 ≤ k ≤ n,

then β is an orthogonal basis for W .
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Review

Theorem

If V is a finite-dimensional inner product space with dim(V ) = n,
then V has an orthonormal basis β = { v1, . . . , vn }. If v ∈ V , then

v =
n∑

j=1

〈v , vj〉vj .

Corollary

Let V be a finite-dimensional inner product space and let
β = { v1, . . . , vn } be an orthonormal basis for V . If T ∈ L(V ) is a
linear operator, then [T ]β = (Aij) where for all 1 ≤ i , j ≤ n

Aij = 〈T (vj) , vi 〉.
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Orthogonal Complements

Definition

Let S be a nonempty subset of an inner product space V . Then we
let

S⊥ = { v ∈ V : 〈v , w〉 = 0 for all w ∈ S }.

We call S⊥ the orthogonal complement of S (pronounced “S
perp”).

Remark (Low Hanging Fruit)

Note that S⊥ is a subspace V : clearly 0V ∈ S⊥ and if v , v ′ ∈ S⊥

and a ∈ F, then for all w ∈ S ,
〈av + v ′ , w〉 = a〈v , w〉+ 〈v ′ , w〉 = 0. It is also easy to prove
that V⊥ = {0V } and {0V }⊥ = V .
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Example

Example

Let v0 = (a, b, c) ∈ R3 and S = {v0}. Then

S⊥ = { v ∈ R3 : 〈v , v0〉 = 0 }
= { (x , y , z) ∈ R3 : ax + by + cz = 0 }.

If you took Math 8, or otherwise have a proper education, you
recognize this as the plane in R3 through the origin with normal
vector v0. Thus if v0 = e3 = (0, 0, 1), then S⊥ is just the xy -plane.
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Thanks for the Memories

Remark

Recall that if V is a vector space with subspaces W1 and W2, then
we say that V is the direct sum W1 ⊕W2 if W1 ∩W2 = {0V } and
V = W1 + W2.

1 We sometimes call W2 a complement of W1.

2 If V = W1 ⊕W2, then every v ∈ V is uniquely of the form
v = w1 + w2 with wk ∈Wk .

3 The linear operator P ∈ L(V ) such that P(v) = w1 (where
v = w1 + w2 as in item (2)) is called the projection of V on
W1 along W2.

4 The definition of P in item (3) is a bit awkward as a subspace
W1 can have many different complementary subspaces W2.
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Subspaces

Theorem

Suppose that W is a finite-dimensional subspace of an inner
product space V . Then V is the direct sum W ⊕W⊥. In
particular, given v ∈ V , there are unique vectors w ∈W and
z ∈W⊥ such that v = w + z. If β = {w1, . . . ,wk } is an
orthonormal basis for W , then

w =
k∑

j=1

〈v , wj〉wj . (‡)

Remark

Since V = W ⊕W⊥, the map P : V → V sending v ∈ V to
w ∈W given by (‡) is the linear operator we called the projection
of V onto W along W⊥. In the case, we call P the orthogonal
projection of V onto W and w the orthogonal projection of v onto
W .
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Proof

Proof.

To see that V = W ⊕W⊥ we need to verify that
W ∩W⊥ = {0V } and that W + W⊥ = V .

Let w be as in (‡) and let z = v − w . I claim that z ∈W⊥. For
this, it suffices (by a homework exercise) to see that 〈z , wj〉 = 0
for all 1 ≤ j ≤ k. But

〈z , wj〉 =
〈
v −

k∑
i=1

〈v , wi 〉wi , wj

〉
= 〈v , wj〉 − 〈v , wj〉 = 0.

Since we clearly have w ∈W , we have v = w + z ∈W + W⊥. On
the other hand, if v ∈W ∩W⊥, then 〈v , v〉 = 0 and v = {0V }.
This completes the proof.
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Closest Vectors

Corollary

Suppose that W is a finite-dimensional subspace of an inner
product space V . If v ∈ V and w = P(v) is the orthogonal
projection of v onto W , then w is the closest vector in W to v.
That is, if x ∈W, then

‖x − v‖ ≥ ‖w − v‖.

Proof.

By the theorem, v = w + z with z ∈W⊥. Then if x ∈W , we
have w − x ∈W . Then the Pythagorean Equality (§6.1, #10)
implies that

‖x − v‖2 = ‖x − w − z‖2 = ‖z + (w − x)‖2

= ‖z‖2 + ‖w − x‖2 ≥ ‖z‖2 = ‖w − v‖2

The result follows by taking square roots.
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Break Time

Time for a break
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Orthonormal Bases

Theorem

Let V be a n-dimensional inner product space. Suppose that
S = { v1, . . . , vk } is an orthonormal set in V .

1 Then S can be extended to an orthonormal basis
β = { v1, . . . , vk , vk+1, . . . , vn } for V .

2 If W = Span(S), then { vk+1, . . . , vk } is a basis for W⊥.

3 If W is any subspace of V then
dim(V ) = dim(W ) + dim(W⊥).
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A Lemma

Lemma

Suppose that V is a finite-dimension vector space and that W1

and W2 are subspaces. If V = W1 ⊕W2, then
dim(V ) = dim(W1) + dim(W2).

Proof of the Lemma.

We proved on the preliminary exam that, for any subspaces W1

and W2,

dim(W1 + W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

But if V = W1 ⊕W2 we have W1 + W2 = V and
W1 ∩W2 = {0V }. So the result follows.
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Proof

Proof.

(3) Item (3) follows from the lemma.

(1) We can extend S to a basis { v1, . . . , vk ,wk+1, . . . ,wn } by
previous results. Then we can apply Gram-Schmidt to get an
orthogonal basis { v ′1, . . . , v ′n }. A straightforward induction
argument shows that v ′j = vj if 1 ≤ j ≤ k . Now can normalize that
last n − k vectors to get an orthonormal basis.

(2) Clearly, { vk+1, . . . , vn } is an orthonormal subset of W⊥.
Hence it is linearly independent and contains dim(W⊥) = n − k
vectors. Hence it is a basis.
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Break Time

Time for a break and some questions.
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Linear Functionals

Proposition

Suppose that V is a finite-dimensional inner product space over F
and that g : V → F is a linear map (called a linear functional on
V ). Then there is a unique vector z ∈ V such that g(v) = 〈v , z〉.

Proof.

Let β = { v1, . . . , vn } be an orthonormal basis for V . Let

z =
n∑

j=1

g(vj)vj .

Define h : V → F by h(v) = 〈v , z〉. Then h is linear and if
1 ≤ k ≤ n, we have

h(vk) =
n∑

j=1

〈vk , g(vj)vj〉 = g(vk).

Since β is a basis, this implies h = g .
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Proof

Proof Continued.

To see that z is unique, suppose that we also have g(v) = 〈v , z ′〉.
Then 〈v , z − z ′〉 = g(v)− g(v) = 0 for all v . This forces z = z ′

and proves uniqueness.

Example

Suppose that g : R3 → R is linear. The previous proposition
implies that there is a v = (a, b, c) ∈ R3 such that
g(x , y , z) = 〈(x , y , z), (a, b, c)〉 = ax + by + cz . This is just the
map LA where A is the 1× 3-matrix A = (a b c) which is just the
matrix of g with respect to the standard bases.
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The Adjoint

Theorem (The Adjoint)

Let V be a finite-dimensional inner product space and T ∈ L(V ).
Then there is a unique T ∗ ∈ L(V ) such that

〈T (v) , w〉 = 〈v , T ∗(w)〉 for all v ,w ∈ V .

The map T ∗ (pronounced “T star”) is called the adjoint of T .

Proof.

Fix w ∈ V and define g : V → F by g(v) = 〈T (v) , w〉. It is not
hard to see that g is linear:

g(av + v ′) = 〈T (av + v ′) , w〉
= a〈T (v) , w〉+ 〈T (v ′) , w〉
= ag(v) + g(v ′).

Hence there is a unique vector in V , which we call T ∗(w), such
that g(v) = 〈v , T ∗(w)〉. This defines a function T ∗ : V → V .
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Proof

Proof Continued.

I claim that T ∗ is linear. If w ,w ′ ∈ V and a ∈ F, then for all
v ∈ V , we have

〈v , T ∗(aw + w ′)〉 = 〈T (v) , aw + w ′〉
= a〈T (v) , w〉+ 〈T (v) , w ′〉
= a〈v , T ∗(w)〉+ 〈v , T ∗(w ′)〉
= 〈v , aT ∗(w)〉+ 〈v , T ∗(w ′)〉
= 〈v , aT ∗(w) + T ∗(w ′)〉.

Since this holds for all v ∈ V , we have
T ∗(aw + w ′) = aT ∗(w) = T ∗(w ′) and T ∗ ∈ L(V ) as claimed.

Now suppose U ∈ L(V ) also satisfies 〈T (v) , w〉 = 〈v , U(w)〉 for
all v ,w ∈ V . Then for each w ∈ V and all v ∈ V ,
〈v , T ∗(w)〉 = 〈v , U(w)〉. Thus T ∗(w) = U(w) for all w and
U = T ∗.
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Flipped

Remark

Note that

〈w , T (v)〉 = 〈T (v) , w〉 = 〈v , T ∗(w)〉
= 〈T ∗(w) , v〉

Thus I have always though of the adjoint was saying that we can
flip the operator T from one side of the inner product to the other
provided we decorate it with a ∗ when we do.

Remark (Reading the Book)

If V is infinite dimensional and T is a linear operator on V , it
turns out that T may not have an adjoint T ∗ ∈ L(V ) that satisfies
〈T (v) , w〉 = 〈v , T ∗(w)〉 for all v ,w ∈ V . But if it does, it is still
unique.
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Matrix Adjoints

Theorem

Let V be a finite-dimensional inner product space with an
orthonormal basis β. If T ∈ L(V ), then

[T ∗]β = [T ]∗β.

Remark

This result gives us a concrete way to compute what T ∗ is!
However, keep in mind that this works for any orthonormal basis. It
is usually not correct for an ordered basis which is not orthonormal.
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Proof

Proof Continued.

To make the notation more readable, let A = [T ]β and B = [T ∗]β.
Let β = { v1, . . . , vn }. Then

Bij = 〈T ∗(vj) , vi 〉 = 〈vj , T (vi )〉
= 〈T (vi ) , vj〉 = Aji .

That is B = A∗.

Remark

For a given orthonormal basis β, it is perfectly possible that
[T ]∗β = [T ]β. Then T = T ∗. We call such operators self adjoint.
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Matrix Version

Corollary

If A ∈ Mn×n(F), then (LA)∗ = LA∗ .

Proof.

Let σ be the standard basis for Fn. Then σ is also an orthonormal
basis and [LA]σ = A. Then by the theorem, [L∗A]σ = A∗ and
L∗A = LA∗ .
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Properties of the Adjoint

Theorem

Suppose that V is an inner product space and T ,U ∈ L(V ). If V
is not finite-dimensional, assume that both T and U have adjoints.

1 (cT + U)∗ = cT ∗ + U∗.

2 (TU)∗ = U∗T ∗.

3 (T ∗)∗ = T ∗∗ = T.

4 I ∗V = IV .

Remark

To be pedantic, part of the assertion in the above result is that in
the infinite-dimensional case, cT + U, TU, and IV always have
adjoints if T and U do. Of course, this is automatic in the
finite-dimensional case.
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Proof

Proof.

These results are all proved similarly. For example, to prove
item (2) consider

〈TU(v) , w〉 = 〈T (U(v)) , w〉 = 〈U(v) , T ∗(w)〉
= 〈v , U∗(T ∗(w))〉 = 〈v , U∗T ∗(w)〉.

By uniqueness, (TU)∗ = U∗T ∗.
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Matrices

Corollary

Suppose A,B ∈ Mn×n(F) and c ∈ F.

1 (cA + B)∗ = cA∗ + B∗.

2 (AB)∗ = B∗A∗.

3 A∗∗ = A.

4 I ∗n = In.

Proof.

I just prove item (2). Then

L(AB)∗ = (LAB)∗ = (LALB)∗ = L∗BL
∗
A = LB∗LA∗ = LB∗A∗ .

Therefore (AB)∗ = B∗A∗.
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Enough

1 That is enough for today.
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