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Let’s Get Started

1 We should be recording.
2 The final will be administered in a manner similar to the

prelim and midterm exams. I will release the final on the first
day of the final period, Saturday, March 13, at 8am EST, and
require it to be completed by Monday, March 15 at 10pm
EST. Our assign exam period is Sunday at 11:30am, but you
can work it any time during the above window. I will
announce the time period for the exam next week, but at the
moment I am thinking six hours so that everyone should have
more than enough time to work the exam, but not so much
that our exam cuts into your time for your other exams.

3 The final will cover the entire course and I hope to get to
parts of Section 6.6. We probably will not be covering all of
sections 6.2 – 6.6. You will only be responsible for what we
cover in lecture. More details later.

4 But first, are there any questions from last time?
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Review

Definition

Let S be a nonempty subset of an inner product space V . Then we
let

S⊥ = { v ∈ V : 〈v , w〉 = 0 for all w ∈ S }.

We call S⊥ the orthogonal complement of S (pronounced “S
perp”).

Theorem

Suppose that W is a finite-dimensional subspace of an inner
product space V . Then V is the direct sum W ⊕W⊥. In
particular, given v ∈ V , there are unique vectors w ∈W and
z ∈W⊥ such that v = w + z. If β = {w1, . . . ,wk } is an
orthonormal basis for W , then

w =
k∑

j=1

〈v , wj〉wj . (‡)
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Review

Remark

Since V = W ⊕W⊥, the map P : V → V sending v ∈ V to
w ∈W given by (1) is the linear operator we called the projection
of V onto W along W⊥. In the case, we call P the orthogonal
projection of V onto W and w the orthogonal projection of v onto
W .

Theorem (The Adjoint)

Let V be a finite-dimensional inner product space and T ∈ L(V ).
Then there is a unique T ∗ ∈ L(V ) such that

〈T (v) , w〉 = 〈v , T ∗(w)〉 for all v ,w ∈ V .

The map T ∗ (pronounced “T star”) is called the adjoint of T .
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Matrix Adjoints

Theorem

Let V be a finite-dimensional inner product space with an
orthonormal basis β. If T ∈ L(V ), then

[T ∗]β = [T ]∗β.

Theorem

Suppose that V is an inner product space and T ,U ∈ L(V ). If V
is not finite-dimensional, assume that both T and U have adjoints.

1 (cT + U)∗ = cT ∗ + U∗.

2 (TU)∗ = U∗T ∗.

3 (T ∗)∗ = T ∗∗ = T.

4 I ∗V = IV .
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Goals Upgraded

Remark

Since we like to diagonalize operators on ordinary
finite-dimensional vector spaces V by finding a basis of
eigenvectors for V , we can upgrade our quest to try to find an
orthonormal basis of eigenvectors for a linear operator on a
finite-dimensional inner product space V . We say that such an
operator is orthogonally diagonalizable.

Remark

Note that if T ∈ L(V ) is orthogonally diagonalizable then there is
an orthonormal basis β such that [T ]β is diagonal. But then so is
[T ∗]β = [T ]β. But then

[T ∗T ]β = [T ∗]β[T ]β = [T ]β[T ∗]β = [TT ∗]β.

This means that T and T ∗ commute: T ∗T = TT ∗.
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Normal Operators

Definition

A linear operator T ∈ L(V ) on an inner product space V is called
normal if T ∗T = TT ∗. Similarly, A ∈ Mn×n(F) is called normal of
A∗A = AA∗.

Example

Let Tθ : R2 → R2 be rotation by θ radians counterclockwise
around the origin. Then with respect to the standard basis,

[Tθ]σ =
( cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (1)

Then you could check that [Tθ]∗σ[Tθ]σ = I2 = [Tθ]σ[Tθ]∗σ which
implies that Tθ is normal. Alternatively, note that T ∗θ = T−θ and
see directly that T ∗θ Tθ = IR2 = TθT

∗
θ .
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Bummer

Remark

If 0 < θ < π, then we have already seen that Tθ;R2 → R2 has no
eigenvectors. So normality of T ∈ L(V ) is not generally going to
imply that T is orthogonally diagonalizable for a real vector space
V . Nevertheless, it will suffice in a complex vector space. Proving
this will be our next goal.
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Normal Operators

Theorem

Let V be a real or complex inner product space and let T ∈ L(V )
be normal.

1 For all v ∈ V , ‖T (v)‖ = ‖T ∗(v)‖.
2 For all c ∈ F, T − cIV is normal.
3 If v is an eigenvector for T with eigenvalue λ, then v is also

an eigenvector for T ∗ with eigenvalue λ.
4 If v1 and v2 are eigenvectors for T with distinct eigenvalues,

then v1 and v2 are orthogonal.

Proof.

(1) We have

‖T (v)‖2 = 〈T (v) , T (v)〉 = 〈T ∗T (v) , v〉
= 〈TT ∗(v) , v〉 = 〈T ∗(v) , T ∗(v)〉 = ‖T ∗(v)‖2.

This proves (1), and the proof of (2) is routine.
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Proof

Proof Continued.

(3) Suppose T (v) = λv with v 6= 0V . Then U = T − λIV is
normal with U∗ = T ∗ − λIV . Furthermore, ‖U(v)‖ = 0. By
part (1), ‖U∗(v)‖ = 0 and v is an eigenvector for T ∗ with
eigenvalue λ as claimed.

(4) Suppose T (v1) = λ1v1 and T (v2) = λ2v2 with λ1 6= λ2. Then

λ1〈v1 , v2〉 = 〈λ1v1 , v2〉 = 〈T (v1) , v2〉
= 〈v1 , T ∗(v2)〉 = 〈v1 , λ2v2〉 = λ2〈v1 , v2〉.

Therefore (λ2 − λ1)〈v1 , v2〉 = 0. Since λ2 − λ1 6= 0, we must have
〈v1 , v2〉 = 0.
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Break Time

Time for a break and some questions.
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Orthogonal Complements Again

Lemma

Suppose that V is an inner product space and that T ∈ L(V ). If
W is T -invariant, then W⊥ is T ∗-invariant.

Proof.

Suppose w ∈W and z ∈W⊥. Then T (w) ∈W and

〈T ∗(z) , w〉 = 〈z , T (w)〉 = 0.

Since this holds for all w ∈W , it follows that T ∗(z) ∈W⊥. But z
was an arbitrary element of W⊥.
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Key Lemma

Lemma

Suppose that V is an inner product space and that T ∈ L(V ) is
normal. Suppose that W is a subspace that is both T-invariant
and T ∗-invariant. Then W⊥ is T -invariant and the restriction
TW⊥ is normal in L(W⊥).

Proof.

Since W is T ∗-invariant, W⊥ is T -invariant. By symmetry, is also
T ∗ invariant. Hence we can form the operators TW⊥ and T ∗

W⊥ on

the inner product space W⊥. If x , y ∈W⊥, then

〈TW⊥(x) , y〉 = 〈T (x) , y〉 = 〈x , T ∗(y)〉 = 〈x , T ∗W⊥(y)〉.

Since the adjoint is unique, this means that T ∗
W⊥ = (TW⊥)∗ as

operators on W⊥. But TW⊥ and T ∗
W⊥ commute because T and

T ∗ do. Hence TW⊥ is normal as claimed.
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The Main Result

Theorem

Suppose that T is a linear operator on a finite-dimensional inner
product space V whose characteristic polynomial splits. If T is
normal, then T is orthogonally diagonalizable.

Proof.

We will work by induction on n = dim(V ). If n = 1, then any unit
vector v ∈ V is an eigenvector and β = {v} is an orthonormal
basis. So we assume that the result holds for inner product spaces
of dimension n − 1 for n ≥ 2 and consider V with dim(V ) = n.
Since the characteristic polynomial of T splits, it must have at
least one root and hence T has an eigenvector v1. Since T is
normal, v1 is also an eigenvector for T ∗.
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Proof

Proof Continued.

We can assume ‖v1‖ = 1 and let W = Span({v1}). Then W is
both T -invariant and T ∗-invariant. By our lemma, W⊥ is
T -invariant and TW⊥ is normal. Furthermore, its characteriestic
polynomial divides that of T and must split as well. Since
dim(W⊥) = n − 1, the induction hypotheses implies that W⊥ has
an orthonormal basis of eigenvectors { v2, . . . , vn } for TW⊥ . Since
TW⊥ is the restriction of T , { v2, . . . , vn } is also an orthonormal
set of eigenvectors for T . But then β = { v1, . . . , vn } is an
orthonormal set of eigenvectors for T . In particular, β is linearly
independent. Since dim(V ) = n, β is a basis and we are done.
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Complex Case

Corollary

Suppose that T is a linear operator on a finite-dimensional
complex inner product space. Then T is orthogonally
diagonalizable if and only if T is normal.

Proof.

If T is orthogonally diagonalizable, we have already pointed out
that T must be normal.

Since we are working over C, the characteristic polynomial of T
always splits. Therefore if T is normal, it is orthogonally
diagonalizable by the previous theorem.
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Break Time

Time for a well earned break and a few questions.
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Self-Adjoint Operators

Definition

An operator T on an inner product space V is called self-adjoint if
T = T ∗. Similarly, a matrix A ∈ Mn×n(F) is called self-adjoint if
A = A∗. The textbook sometimes uses Hermitian in place of
self-adjoint.

Remark

An operator T is self-adjoint if and only if [T ]β is self-adjoint for
some and hence all orthonormal bases β. Furthermore, a real
matrix is self-adjoint if and only if it is symmetric.
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Cool Result

Lemma

Let T be a self-adjoint operator on a finite-dimensional inner
product space V .

1 All the eigenvalues of T are real.

2 The characteristic polynomial of T splits.

Remark

Item (1) only has content if V is a complex vector space, while
item (2) only has content if V is a real vector space.
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Proof

Proof.

(1) Let v be an eigenvector for T with eigenvalue λ. We can
assume that ‖v‖ = 1. Then

λ = λ〈v , v〉 = 〈λv , v〉 = 〈T (v) , v〉
= 〈v , T (v)〉 = 〈v , λv〉 = λ〈v , v〉 = λ.

Therefore λ = λ and λ is real.

(2) As per our remark, we can assume that V is a real vector space
with n = dim(V ). Let β be an orthonormal basis for V and let
A = [T ]β. Then A is self-adjoint (which simply means symmetric
since V is a real vector space). Let TA be the left-multiplication
operator on Cn given by TA(x) = Ax for x ∈ Cn.
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Proof

Proof Continued.

If σ is the standard (orthonormal) basis for Cn, then [TA]σ = A. By
part (1), the eigenvalues of TA are all real. Since we are working
over C, the characteristic polynomial of TA splits into factors of
the form (t − λ) with each λ ∈ R. Hence the characteristic
polynomial of TA splits over R. But the characteristic polynomial
of TA is the same as that for A which is the same as that for T .
Hence the characteristic polynomial of T splits over R.
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The Big Corollary

Corollary

Suppose that T is a self-adjoint operator on a finite-dimensional
real inner product space. Then T is self-adjoint if and only if T is
orthogonally diagonalizable.

Proof.

If T is self-adjoint, then by our lemma, its characteristic
polynomial splits. Since self-adjoint operators are obviously
normal, T is orthogonally diagonalizable.

I will leave the converse as an exercise.
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Enough

1 That is enough for today.
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