
Math 24: Winter 2021
Lecture 25

Dana P. Williams

Dartmouth College

Friday, March 5, 2021

Dana P. Williams Math 24: Winter 2021 Lecture 25



Let’s Get Started

1 We should be recording.

2 The final will be administered in a manner similar to the
prelim and midterm exams and will available for download
Saturday March 13 at 8am until Monday March 15 at 10pm.

3 The final will be cumulative. In particular, it will cover
whatever parts of Chapter 6 we manage to cover by
Wednesday. You will only be responsible for what we cover in
lecture.

4 Zinn’s Law and the Law of Exponential Interest.

5 But first, are there any questions from last time?
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Review

Definition

Let S be a nonempty subset of an inner product space V . Then we
let

S⊥ = { v ∈ V : 〈v , w〉 = 0 for all w ∈ S }.

We call S⊥ the orthogonal complement of S (pronounced “S
perp”).

Theorem

Suppose that W is a finite-dimensional subspace of an inner
product space V . Then V is the direct sum W ⊕W⊥. In
particular, given v ∈ V , there are unique vectors w ∈W and
z ∈W⊥ such that v = w + z . If β = {w1, . . . ,wk } is an
orthonormal basis for W , then

w =
k∑

j=1

〈v , wj〉wj . (‡)
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Review

Remark

Since V = W ⊕W⊥, the map P : V → V sending v ∈ V to
w ∈W given by (1) is the linear operator we called the projection
of V onto W along W⊥. In the case, we call P the orthogonal
projection of V onto W and w the orthogonal projection of v onto
W .

Theorem (The Adjoint)

Let V be a finite-dimensional inner product space and T ∈ L(V ).
Then there is a unique T ∗ ∈ L(V ) such that

〈T (v) , w〉 = 〈v , T ∗(w)〉 for all v ,w ∈ V .

The map T ∗ (pronounced “T star”) is called the adjoint of T .
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Matrix Adjoints

Theorem

Let V be a finite-dimensional inner product space with an
orthonormal basis β. If T ∈ L(V ), then

[T ∗]β = [T ]∗β.

Theorem

Suppose that V is an inner product space and T ,U ∈ L(V ). If V
is not finite-dimensional, assume that both T and U have adjoints.

1 (cT + U)∗ = cT ∗ + U∗.

2 (TU)∗ = U∗T ∗.

3 (T ∗)∗ = T ∗∗ = T .

4 I ∗V = IV .
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Goals Upgraded

Remark

Since we like to diagonalize operators on ordinary
finite-dimensional vector spaces V by finding a basis of
eigenvectors for V , we can upgrade our quest to try to find an
orthonormal basis of eigenvectors for a linear operator on a
finite-dimensional inner product space V . We say that such an
operator is orthogonally diagonalizable.

Remark

Note that if T ∈ L(V ) is orthogonally diagonalizable then there is
an orthonormal basis β such that [T ]β is diagonal. But then so is
[T ∗]β = [T ]∗β. But then

[T ∗T ]β = [T ∗]β[T ]β = [T ]β[T ∗]β = [TT ∗]β.

This means that T and T ∗ commute; that is, T ∗T = TT ∗. What
else can we add if V is a real vector space?
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Normal Operators

Definition

A linear operator T ∈ L(V ) on an inner product space V is called
normal if T ∗T = TT ∗. Similarly, A ∈ Mn×n(F) is called normal of
A∗A = AA∗.

Example

Let Tθ : R2 → R2 be rotation by θ radians counterclockwise
around the origin. Then with respect to the standard basis,

[Tθ]σ =
( cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (1)

Then you could check that [Tθ]∗σ[Tθ]σ = I2 = [Tθ]σ[Tθ]∗σ which
implies that Tθ is normal. Alternatively, note that T ∗θ = T−θ and
see directly that T ∗θ Tθ = IR2 = TθT

∗
θ .
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Bummer

Remark

If 0 < θ < π, then we have already seen that Tθ;R2 → R2 has no
eigenvectors. So normality of T ∈ L(V ) is not generally going to
imply that T is orthogonally diagonalizable for a real vector space
V . Nevertheless, it will suffice in a complex vector space. Proving
this will be our next goal.
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Normal Operators

Theorem

Let V be a real or complex inner product space and let T ∈ L(V )
be normal.

1 For all v ∈ V , ‖T (v)‖ = ‖T ∗(v)‖.
2 For all c ∈ F, T − cIV is normal.
3 If v is an eigenvector for T with eigenvalue λ, then v is also

an eigenvector for T ∗ with eigenvalue λ.
4 If v1 and v2 are eigenvectors for T with distinct eigenvalues,

then v1 and v2 are orthogonal.

Proof.

(1) We have

‖T (v)‖2 = 〈T (v) , T (v)〉 = 〈T ∗T (v) , v〉
= 〈TT ∗(v) , v〉 = 〈T ∗(v) , T ∗(v)〉 = ‖T ∗(v)‖2.

This proves (1), and the proof of (2) is routine (note that
(T − cIV )∗ = T ∗ − cIV and compute).
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Proof

Proof Continued.

(3) Suppose T (v) = λv with v 6= 0V . Then U = T − λIV is
normal with U∗ = T ∗ − λIV . Furthermore, ‖U(v)‖ = 0. By
part (1), ‖U∗(v)‖ = 0 and v is an eigenvector for T ∗ with
eigenvalue λ as claimed.

(4) Suppose T (v1) = λ1v1 and T (v2) = λ2v2 with λ1 6= λ2. Then

λ1〈v1 , v2〉 = 〈λ1v1 , v2〉 = 〈T (v1) , v2〉
= 〈v1 , T ∗(v2)〉 = 〈v1 , λ2v2〉 = λ2〈v1 , v2〉.

Therefore (λ2 − λ1)〈v1 , v2〉 = 0. Since λ2 − λ1 6= 0, we must have
〈v1 , v2〉 = 0.
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Break Time

Time for a break and some questions.
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Orthogonal Complements Again

Lemma

Suppose that V is an inner product space and that T ∈ L(V ). If
W is T -invariant, then W⊥ is T ∗-invariant.

Proof.

Suppose w ∈W and z ∈W⊥. Then T (w) ∈W and

〈T ∗(z) , w〉 = 〈z , T (w)〉 = 0.

Since this holds for all w ∈W , it follows that T ∗(z) ∈W⊥. But z
was an arbitrary element of W⊥.
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Key Lemma

Lemma

Suppose that V is an inner product space and that T ∈ L(V ) is
normal. Suppose that W is a subspace that is both T -invariant
and T ∗-invariant. Then W⊥ is T -invariant and the restriction
TW⊥ is normal in L(W⊥).

Proof.

Since W is T ∗-invariant and T ∗∗ = T , W⊥ is T -invariant. By
symmetry, is also T ∗ invariant. Hence we can form the operators
TW⊥ and T ∗

W⊥ on the inner product space W⊥. If x , y ∈W⊥,
then

〈TW⊥(x) , y〉 = 〈T (x) , y〉 = 〈x , T ∗(y)〉 = 〈x , T ∗W⊥(y)〉.

Since the adjoint is unique, this means that T ∗
W⊥ = (TW⊥)∗ as

operators on W⊥. But TW⊥ and T ∗
W⊥ commute because T and

T ∗ do. Hence TW⊥ is normal as claimed.
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The Main Result

Theorem

Suppose that T is a linear operator on a finite-dimensional inner
product space V and that the characteristic polynomial of T splits.
If T is normal, then T is orthogonally diagonalizable.

Proof.

We will work by induction on n = dim(V ). If n = 1, then any unit
vector v ∈ V is an eigenvector and β = {v} is an orthonormal
basis. So we assume that the result holds for inner product spaces
of dimension n − 1 for for some n ≥ 2. We consider V with
dim(V ) = n. Since the characteristic polynomial of T splits, it
must have at least one root and hence T has an eigenvector v1.
Since T is normal, v1 is also an eigenvector for T ∗.
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Proof

Proof Continued.

We can assume ‖v1‖ = 1 and let W = Span({v1}). Then W is
both T -invariant and T ∗-invariant. By our lemma, W⊥ is
T -invariant and TW⊥ is normal. Furthermore, its characteriestic
polynomial divides that of T and must split as well. Since
dim(W⊥) = n − 1, the induction hypotheses implies that W⊥ has
an orthonormal basis of eigenvectors { v2, . . . , vn } for TW⊥ . Since
TW⊥ is the restriction of T , { v2, . . . , vn } is also an orthonormal
set of eigenvectors for T . But then β = { v1, . . . , vn } is an
orthonormal set of eigenvectors for T . In particular, β is linearly
independent. Since dim(V ) = n, β is a basis and we are done.
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Complex Case

Corollary

Suppose that T is a linear operator on a finite-dimensional
complex inner product space. Then T is orthogonally
diagonalizable if and only if T is normal.

Proof.

If T is orthogonally diagonalizable, we have already pointed out
that T must be normal.

Since we are working over C, the characteristic polynomial of T
always splits. Therefore if T is normal, it is orthogonally
diagonalizable by the previous theorem.
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Break Time

Time for a well earned break and a few questions.
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Self-Adjoint Operators

Definition

An operator T on an inner product space V is called self-adjoint if
T = T ∗. Similarly, a matrix A ∈ Mn×n(F) is called self-adjoint if
A = A∗. The textbook sometimes uses Hermitian in place of
self-adjoint.

Remark

An operator T is self-adjoint if and only if [T ]β is self-adjoint for
some and hence all orthonormal bases β. Furthermore, a real
matrix is self-adjoint if and only if it is symmetric.
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Cool Result

Lemma

Let T be a self-adjoint operator on a finite-dimensional inner
product space V .

1 All the eigenvalues of T are real.

2 The characteristic polynomial of T splits.

Remark

Item (1) only has content if V is a complex vector space, while
item (2) only has content if V is a real vector space.
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Proof

Proof.

(1) Let v be an eigenvector for T with eigenvalue λ. We can
assume that ‖v‖ = 1. Then

λ = λ〈v , v〉 = 〈λv , v〉 = 〈T (v) , v〉
= 〈v , T (v)〉 = 〈v , λv〉 = λ〈v , v〉 = λ.

Therefore λ = λ and λ is real.

(2) As per our remark, we can assume that V is a real vector space
with n = dim(V ). Let β be an orthonormal basis for V and let
A = [T ]β. Then A is self-adjoint (which simply means symmetric
since V is a real vector space). Let TA be the left-multiplication
operator on Cn given by TA(x) = Ax for x ∈ Cn.
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Proof

Proof Continued.

If σ is the standard (orthonormal) basis for Cn, then [TA]σ = A.
Hence TA is self-adjoint. By part (1), the eigenvalues of TA are all
real. Since we are working over C, the characteristic polynomial of
TA splits into factors of the form (t − λ) with each λ ∈ R. Hence
the characteristic polynomial of TA splits over R. But the
characteristic polynomial of TA is the same as that for A which is
the same as that for T . Hence the characteristic polynomial of T
splits over R.
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The Big Corollary

Corollary

Suppose that T is a self-adjoint operator on a finite-dimensional
real inner product space. Then T is self-adjoint if and only if T is
orthogonally diagonalizable.

Proof.

If T is self-adjoint, then by our lemma, its characteristic
polynomial splits. Since self-adjoint operators are obviously
normal, T is orthogonally diagonalizable.

I will leave the converse as an exercise.
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Enough

1 That is enough for today.
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