Math 24: Winter 2021 Lecture 26

Dana P. Williams

Dartmouth College

Monday, March 8, 2021

- We should be recording.
- The final will be administered in a manner similar to the prelim and midterm exams and will available for download Saturday March 13 at 8am until Monday March 15 at 10pm.
- The final will be cumulative. In particular, it will cover whatever parts of Chapter 6 we manage to cover by Wednesday. You will only be responsible for what we cover in lecture.
- Sinn's Law and the Law of Exponential Interest.
- Sut first, are there any questions from last time?

Definition

A linear operator $T \in \mathcal{L}(V)$ on an inner product space V is called normal if $T^*T = TT^*$. Similarly, $A \in M_{n \times n}(\mathbf{F})$ is called normal of $A^*A = AA^*$.

Theorem

Let V be a real or complex inner product space and let $T \in \mathcal{L}(V)$ be normal.

- **1** For all $v \in V$, $||T(v)|| = ||T^*(v)||$.
- **2** For all $c \in \mathbf{F}$, $T cl_V$ is normal.
- If v is an eigenvector for T with eigenvalue λ, then v is also an eigenvector for T* with eigenvalue λ.
- If v₁ and v₂ are eigenvectors for T with distinct eigenvalues, then v₁ and v₂ are orthogonal.

Theorem

Suppose that T is a linear operator on a finite-dimensional inner product space V whose characteristic polynomial splits. If T is normal, then T is orthogonally diagonalizable.

Corollary

Suppose that T is a linear operator on a finite-dimensional complex inner product space. Then T is orthogonally diagonalizable if and only if T is normal.

Corollary

Suppose that T is a self-adjoint operator on a finite-dimensional real inner product space. Then T is self-adjoint if and only if T is orthogonally diagonalizable.

Definition

Suppose that V is an inner product space over **F** and $T \in \mathcal{L}(V)$. Then T is called isometric if ||T(v)|| = ||v|| for all $v \in V$. If **F** = **R**, the an isometric operator is called an orthogonal operator and if **F** = **C** an isometric operator is called a unitary operator.

Example

Let $T_{\theta} : \mathbf{R}^2 \to \mathbf{R}^2$ the rotation operator whose matric with respect to the standard basis is $A_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$. It is clear—either geometrically or by a short calculation—that each T_{θ} is isometric. Hence T_{θ} is an orthogonal operator.

Lemma

Let V be a finite-dimensional vector space. Suppose that $T, S \in \mathcal{L}(V)$ and $TS = I_V$. Then both T and S are invertible with $T^{-1} = S$ and $S^{-1} = T$.

Proof.

Let β be an ordered basis for V. Then $[TS]_{\beta} = [T]_{\beta}[S]_{\beta}$. Therefore $[T]_{\beta}$ is invertible and $[T]_{\beta}^{-1} = [S]_{\beta}$. This implies T is invertible and that $[T^{-1}]_{\beta} = [T]_{\beta}^{-1} = [S]_{\beta}$. Hence $T^{-1} = S$. The proof for S is similar.

A Lemma

Lemma

Suppose that U is a self-adjoint operator on an inner product space V. Suppose also that

 $\langle x, U(x) \rangle = 0$ for all $x \in V$.

Then $U = T_0$. (Recall that T_0 is the zero operator on V.)

Proof.

Since T is self-adjoint, it is orthogonally diagonalizable and there is an (orthonormal) basis $\beta = \{v_1, \ldots, v_n\}$ of eigenvectors for T with eigenvalues $\lambda_1, \ldots, \lambda_n$, respectively. Then for $1 \le k \le n$, we have

$$\lambda_k = \lambda_k \langle \mathbf{v}_k , \mathbf{v}_k \rangle = \langle \lambda_k \mathbf{v}_k , \mathbf{v}_k \rangle = \langle T(\mathbf{v}_k) , \mathbf{v}_k \rangle = \mathbf{0}.$$

Therefore $\lambda_k = 0$ and $T(v_k) = 0$ for all $v_k \in \beta$. Since β is a basis, this implies $T = T_0$ as claimed.

Theorem

Let $T \in \mathcal{L}(V)$ for a finite-dimensional inner product space V. Then the following are equivalent.

- T is isometric.
- **2** T is invertible with $T^{-1} = T^*$.
- $TT^* = I_V.$
- $T^*T = I_V.$
- T preserves inner products in that ⟨T(x), T(y)⟩ = ⟨x, y⟩ for all x, y ∈ V.
- If β is an orthonormal basis for V, then T(β) is an orthonormal basis for V.
- The is an orthonormal basis for V such that $T(\beta)$ is an orthonormal basis for V.

Proof

Proof.

We have $(2) \iff (3) \iff (4)$ since V is finite dimensional. (1) \implies (4): For all $x \in V$,

$$\langle x, x \rangle = \|x\|^2 = \|T(x)\|^2 = \langle T(x), T(x) \rangle = \langle x, T^*T(x) \rangle.$$

Therefore $\langle x, (I_V - T^*T)(x) \rangle = 0$ for all $x \in V$. Since $U = I_V - T^*T$ is self-adjoint by our lemma, $T^*T = I_V$. Hence T is invertible and $T^{-1} = T^*$.

(4)
$$\Longrightarrow$$
(5): We have $\langle x, y \rangle = \langle T^*T(x), y \rangle = \langle T(x), T(y) \rangle$.
(5) \Longrightarrow (6): Let $\beta = \{ v_1, \dots, v_n \}$ be an orthonormal basis for V.
Then $T(\beta) = \{ T(v_1), \dots, T(v_n) \}$ and
 $\langle T(v_i), T(v_j) \rangle = \langle v_i, v_j \rangle = \delta_{ij}$. This shows that $T(\beta)$ is an orthonormal basis as well.

(6) \Longrightarrow (7): This is immediate.

Proof

Proof Continued.

(7) \Longrightarrow (1): Suppose that $\beta = \{v_1, \dots, v_n\}$ is an orthonormal basis and that $v \in V$. Then $v = \sum_{j=1}^n a_j v_j$ (where $a_j = \langle v, v_j \rangle$). Then

$$\|v\|^2 = \langle \sum_{j=1}^n a_j v_j , \sum_{k=1}^n a_k v_k \rangle = \sum_{j=1}^n \sum_{k=1}^n a_j \overline{a_k} \langle v_j , v_k \rangle = \sum_{j=1}^n |a_j|^2.$$

But $T(v) = \sum_{j=1}^{n} a_j T(v_j)$. Thus if $T(\beta)$ is also an orthonormal basis, then same computation shows that

$$||T(v)||^2 = \sum_{j=1}^n |a_j|^2 = ||v||^2.$$

Thus T is isometric.

Time for a brake and some questions.

Definition

We say that $A \in M_{n \times n}(\mathbf{R})$ is orthogonal if $A^t A = I_n = AA^t$. We say that $A \in M_{n \times n}(\mathbf{C})$ is unitary if $A^*A = I_n = AA^*$.

Remark

If A is an orthogonal real $n \times n$ -matrix then it is unitary when viewed as an element of $M_{n \times n}(\mathbf{C})$.

Unitary Matrices

Proposition

Let $A \in M_{n \times n}(\mathbf{C})$. Then the following are equivalent.

- A is unitary.
- **2** $A^* = A^{-1}$.
- $A^*A = I_n.$
- **4** $AA^* = I_n$.
- 5 A* is unitary.
- The rows of A are an orthonormal basis for \mathbf{C}^n
- **O** The columns of A are an orthonormal basis for **C**ⁿ.

Remark

I leave it to you to sort our the corresponding statement for orthogonal real matrices.

Proof.

The equivalence of (1) and (2) is essentially by definition. The equivalence of (2), (3), and (4) is general matrix inverse nonsense. Since $A^{**} = A$, it is clear that (5) is equivalent to (1)–(4).

Let v_j be the j^{th} -column of A. Then

$$(A^*A)_{ij} = \sum_{k=1}^n (A^*)_{ik} A_{kj} = \sum_{k=1}^n \overline{A_{ki}} A_{kj} = \langle v_j , v_i \rangle$$

Thus $A^*A = I_n$ if and only if $\langle v_j , v_i \rangle = \delta_{ij}$. That is, (6) \iff (3). A similar argument shows that (7) \iff (4).

Remark

Suppose that A is either a complex normal $n \times n$ -matrix [or a symmetric real $n \times n$ -matrix]. Then our results from Friday's lecture applied to L_A imply that there is an orthonormal basis $\beta = \{v_1, \ldots, v_n\}$ of eigenvectors for A. If we let $U = [v_1 \cdots v_n]$ be the matrix whose columns are the eigenvectors from β , then we have $D = Q^{-1}AQ$ where D is diagonal. Since β is orthonormal, Q is unitary [orthogonal]. Thus

 $D = Q^* A Q$

and we say that A is unitarily equivalent [orthogonally equivalent] to a diagonal matrix. In general, we say that two matrices are unitarily equivalent [orthogonally equivalent] if there is a unitary [orthogonal] matrix P such that $A = P^*BP$.

Example

Let
$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Since A is symmetric, we ought to

be able to orthogonally diagonalize A. Suppose that someone nice gives us the characteristic polynomial $p(\lambda) = -(\lambda - 4)(\lambda - 1)^2$. The easy bit is noticing that

$$A - 4I_3 = \begin{pmatrix} -2 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 so that $v_3 = (1, -1, 1)$ is an eigenvector with eigenvalue 4.

Example

Example (Continued)

Things get more interesting when we consider

$$\begin{array}{l} A - I_3 = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ giving us a basis} \\ \left\{ \begin{array}{l} w_1, w_2 \end{array} \right\} = \left\{ (1, 1, 0), (-1, 0, 1) \right\} \text{ for the } E_1 \text{-eigenspace. As} \\ \text{predicted by the theory, } \langle v_3 \, , \, w_k \rangle = 0 \text{ for } k = 1, 2 \text{ and } v_3 \in E_1^{\perp}. \\ \text{So now we apply Gram-Schmidt to } \left\{ \begin{array}{l} w_1, w_2 \end{array} \right\}. \text{ We let } v_1 = w_1 \text{ and} \end{array}$$

$$egin{aligned} v_2 &= w_2 - rac{\langle w_2 \;, \; v_1
angle}{\langle v_1 \;, \; v_1
angle} v_1 = (-1, 0, 1) - rac{-1}{2} (1, 1, 0) \ &= (-rac{1}{2}, rac{1}{2}, 1). \end{aligned}$$

Thus $\beta' = \{ (1,1,0), (-1,1,2), (1,-1,1) \}$ is an orthogonal basis of eigenvectors.

Example

Example (Continued)

Now we get an orthogonal matrix
$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

such that $D = Q^t A Q$ where $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

Example

Now let's orthogonally diagonalize $A = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$. Here the characteristic polynomial is $p(\lambda) = \lambda^2 - 1$. Thus the eigenvalues are ± 1 . Since $A - I_2 = \begin{pmatrix} -1 & i \\ -i & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -i \\ 0 & 0 \end{pmatrix}$, $v_1 = (i, 1) \in E_1$. Similarly, we get $(-i, 1) \in E_{-1}$. Then $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}$ is a unitary matrix and

$$\begin{pmatrix}1&0\\0&-1\end{pmatrix} = Q^*AQ = \begin{pmatrix}\frac{-i}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\\frac{i}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{pmatrix}\begin{pmatrix}0&i\\-i&0\end{pmatrix}\begin{pmatrix}\frac{i}{\sqrt{2}}&\frac{-i}{\sqrt{2}}\\\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{pmatrix}.$$

Time for a break and some questions.

Definition

Let V be a real inner product space. A function $f: V \rightarrow V$ is called a rigid motion if it is distance preserving in that

$$\|f(x) - f(y)\| = \|x - y\|$$
 for all $x, y \in V$. (*

Remark

Note that we are not making any assumptions on f except for (*). In particular, we are not asserting that f is linear. If f were linear, then f would simply be an orthogonal transformation. A translation—that is a map of the form $f(x) = x + v_0$ for some $v_0 \in V$ —is also a rigid motion. It is not hard to see that that composition of rigid motions is a rigid motion.

Theorem

Suppose that $f: V \to V$ is a rigid motion of a real inner product space V. Then there exists a unique orthogonal transformation $T \in \mathcal{L}(V)$ and a translation g such that $f = g \circ T$. That is, $f(x) = T(x) + v_0$ for a unique orthogonal transformation T and unique vector $v_0 \in V$.

Remark

Note that we simply get an orthogonal transformation if $v_0 = 0_V$ and a translation if $T = I_V$.

Proof.

Let $v_0 = f(0_V)$ and define $T : V \to V$ by $T(x) = f(x) - f(0) = f(x) - v_0$. Since T is the composition of f with translation by $-v_0$, T is a rigid motion.

I claim that T is inner product preserving. Note that

$$||T(x)|| = ||f(x) - f(0_V)|| = ||x - 0_V|| = ||x||.$$

Thus T is isometric. Furthermore,

$$\begin{split} \|T(x) - T(y)\|^2 &= \langle T(x) - T(y) , \ T(x) - T(y) \rangle \\ &= \|T(x)\|^2 - \langle T(x) , \ T(y) \rangle - \langle T(y) , \ T(x) \rangle + \|T(y)\|^2 \\ &= \|x\|^2 - 2\langle T(x) , \ T(y) \rangle + \|y\|^2. \end{split}$$

Proof Continued.

Since T is a rigid motion, we also have

$$||T(x) - T(y)||^2 = ||x - y||^2 = ||x||^2 - 2\langle x, y \rangle + ||y||^2.$$

This means

$$\langle T(x), T(y) \rangle = \langle x, y \rangle$$
 for all $x, y \in V$.

This proves the claim.

Now I claim that T is linear.

Proof

Proof Continued.

Consider

$$\begin{aligned} \|T(x+ay) - T(x) - aT(y)\|^2 \\ &= \|\left[\frac{T(x+ay) - T(x)}{v} - \frac{aT(y)}{w}\right]^2 \\ &= \|v\|^2 - 2\langle v, w \rangle + \|w\|^2 \\ &= \|T(x+ay) - T(x)\|^2 + a^2 \|T(y)\|^2 \\ &- 2a\langle T(x+ay) - T(x), T(y) \rangle \\ &= \|(x+ay) - x\|^2 + a^2 \|y\|^2 \\ &- 2a[\langle T(x+ay), T(y) \rangle - \langle T(x), T(y) \rangle] \\ &= 2a^2 \|y\|^2 - 2a[\langle x+ay, y \rangle - \langle x, y \rangle] \\ &= 2a^2 \|y\|^2 - 2a[\langle x, y \rangle + a\langle y, y \rangle - \langle x, y \rangle] = 0 \end{aligned}$$

Therefore T(x + ay) = T(x) + aT(y) and T is linear as claimed.

Proof Continued.

Since we already saw that T preserved inner products, it follows that T is orthgonal and we have written $f = g \circ T$ for an orthogonal operator T and a translation $g(x) = x + v_0$.

To establish uniqueness, suppose $f(x) = U(x) + u_0$ with U orthogonal. Since $v_0 = f(0_V) = U(0_V) + u_0 = u_0$, this implies T(x) = U(x) for all $x \in V$. That is, U = T and we are done.

1 That is enough for today.