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Let’s Get Started

1 We should be recording.

2 The final will be administered in a manner similar to the
prelim and midterm exams and will available for download
Saturday March 13 at 8am until Monday March 15 at 10pm.

3 The final will be cumulative. In particular, it will cover
whatever parts of Chapter 6 we manage to cover by
Wednesday. You will only be responsible for what we cover in
lecture.

4 Zinn’s Law and the Law of Exponential Interest.

5 But first, are there any questions from last time?
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Review

Definition

A linear operator T ∈ L(V ) on an inner product space V is called
normal if T ∗T = TT ∗. Similarly, A ∈ Mn×n(F) is called normal of
A∗A = AA∗.

Theorem

Let V be a real or complex inner product space and let T ∈ L(V )
be normal.

1 For all v ∈ V , ‖T (v)‖ = ‖T ∗(v)‖.
2 For all c ∈ F, T − cIV is normal.

3 If v is an eigenvector for T with eigenvalue λ, then v is also
an eigenvector for T ∗ with eigenvalue λ.

4 If v1 and v2 are eigenvectors for T with distinct eigenvalues,
then v1 and v2 are orthogonal.
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Review

Theorem

Suppose that T is a linear operator on a finite-dimensional inner
product space V whose characteristic polynomial splits. If T is
normal, then T is orthogonally diagonalizable.

Corollary

Suppose that T is a linear operator on a finite-dimensional
complex inner product space. Then T is orthogonally
diagonalizable if and only if T is normal.

Corollary

Suppose that T is a self-adjoint operator on a finite-dimensional
real inner product space. Then T is self-adjoint if and only if T is
orthogonally diagonalizable.
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Unitary and Orthogonal Operators

Definition

Suppose that V is an inner product space over F and T ∈ L(V ).
Then T is called isometric if ‖T (v)‖ = ‖v‖ for all v ∈ V . If
F = R, the an isometric operator is called an orthogonal operator
and if F = C an isometric operator is called a unitary operator.

Example

Let Tθ : R2 → R2 the rotation operator whose matric with respect

to the standard basis is Aθ =
( cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. It is clear—either

geometrically or by a short calculation—that each Tθ is isometric.
Hence Tθ is an orthogonal operator.
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Least We Forget

Lemma

Let V be a finite-dimensional vector space. Suppose that
T , S ∈ L(V ) and TS = IV . Then both T and S are invertible with
T−1 = S and S−1 = T .

Proof.

Let β be an ordered basis for V . Then [TS ]β = [T ]β[S ]β.
Therefore [T ]β is invertible and [T ]−1β = [S ]β. This implies T is

invertible and that [T−1]β = [T ]−1β = [S ]β. Hence T−1 = S . The
proof for S is similar.
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A Lemma

Lemma

Suppose that U is a self-adjoint operator on an inner product
space V . Suppose also that

〈x , U(x)〉 = 0 for all x ∈ V .

Then U = T0. (Recall that T0 is the zero operator on V .)

Proof.

Since T is self-adjoint, it is orthogonally diagonalizable and there
is an (orthonormal) basis β = { v1, . . . , vn } of eigenvectors for T
with eigenvalues λ1, . . . , λn, respectively. Then for 1 ≤ k ≤ n, we
have

λk = λk〈vk , vk〉 = 〈λkvk , vk〉 = 〈T (vk) , vk〉 = 0.

Therefore λk = 0 and T (vk) = 0 for all vk ∈ β. Since β is a basis,
this implies T = T0 as claimed.
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Isometric Operators

Theorem

Let T ∈ L(V ) for a finite-dimensional inner product space V .
Then the following are equivalent.

1 T is isometric.

2 T is invertible with T−1 = T ∗.

3 TT ∗ = IV .

4 T ∗T = IV .

5 T preserves inner products in that 〈T (x) , T (y)〉 = 〈x , y〉 for
all x , y ∈ V .

6 If β is an orthonormal basis for V , then T (β) is an
orthonormal basis for V .

7 The is an orthonormal basis for V such that T (β) is an
orthonormal basis for V .
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Proof

Proof.

We have (2)⇐⇒(3)⇐⇒(4) since V is finite dimensional.

(1)=⇒(4): For all x ∈ V ,

〈x , x〉 = ‖x‖2 = ‖T (x)‖2 = 〈T (x) , T (x)〉 = 〈x , T ∗T (x)〉.

Therefore 〈x , (IV − T ∗T )(x)〉 = 0 for all x ∈ V . Since
U = IV − T ∗T ) is self-adjoint by our lemma, T ∗T = IV . Hence T
is invertible and T−1 = T ∗.

(4)=⇒(5): We have 〈x , y〉 = 〈T ∗T (x) , y〉 = 〈T (x) , T (y)〉.

(5)=⇒(6): Let β = { v1, . . . , vn } be an orthonormal basis for V .
Then T (β) = {T (v1), . . . ,T (vn) } and
〈T (vi ) , T (vj)〉 = 〈vi , vj〉 = δij . This shows that T (β) is an
orthonormal basis as well.

(6)=⇒(7): This is immediate.
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Proof

Proof Continued.

(7)=⇒(1): Suppose that β = { v1, . . . , vn } is an orthonormal basis
and that v ∈ V . Then v =

∑n
j=1 ajvj (where aj = 〈v , vj〉). Then

‖v‖2 = 〈
n∑

j=1

ajvj ,
n∑

k=1

akvk〉 =
n∑

j=1

n∑
k=1

ajak〈vj , vk〉 =
n∑

j=1

|aj |2.

But T (v) =
∑n

j=1 ajT (vj). Thus if T (β) is also an orthonormal
basis, then same computation shows that

‖T (v)‖2 =
n∑

j=1

|aj |2 = ‖v‖2.

Thus T is isometric.
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Break Time

Time for a brake and some questions.
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Matrices

Definition

We say that A ∈ Mn×n(R) is orthogonal if AtA = In = AAt . We
say that A ∈ Mn×n(C) is unitary if A∗A = In = AA∗.

Remark

If A is an orthogonal real n × n-matrix then it is unitary when
viewed as an element of Mn×n(C).
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Unitary Matrices

Proposition

Let A ∈ Mn×n(C). Then the following are equivalent.

1 A is unitary.

2 A∗ = A−1.

3 A∗A = In.

4 AA∗ = In.

5 A∗ is unitary.

6 The rows of A are an orthonormal basis for Cn

7 The columns of A are an orthonormal basis for Cn.

Remark

I leave it to you to sort our the corresponding statement for
orthogonal real matrices.
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Proof

Proof.

The equivalence of (1) and (2) is essentially by definition. The
equivalence of (2), (3), and (4) is general matrix inverse nonsense.
Since A∗∗ = A, it is clear that (5) is equivalent to (1)–(4).

Let vj be the j th-column of A. Then

(A∗A)ij =
n∑

k=1

(A∗)ikAkj =
n∑

k=1

AkiAkj = 〈vj , vi 〉

Thus A∗A = In if and only if 〈vj , vi 〉 = δij . That is, (6)⇐⇒(3). A
similar argument shows that (7)⇐⇒(4).
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Orthgonal Diagonalization

Remark

Suppose that A is either a complex normal n × n-matrix [or a
symmetric real n × n-matrix]. Then our results from Friday’s
lecture applied to LA imply that there is an orthonormal basis
β = { v1, . . . , vn } of eigenvectors for A. If we let U = [v1 · · · vn
be the matrix whose columns are the eigenvectors from β, then we
have D = Q−1AQ where D is diagonal. Since β is orthonormal, Q
is unitary [orthogonal]. Thus

D = Q∗AQ

and we say that A is unitarily equivalent [orthogonally equivalent]
to a diagonal matrix. In general, we say that two matrices are
unitarily equivalent [orthogonally equivalent] if there is a unitary
[orthogonal] matrix P such that A = P∗BP.
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An Example

Example

Let A =

 2 −1 1
−1 2 −1

1 −1 2

. Since A is symmetric, we ought to

be able to orthogonally diagonalize A. Suppose that someone nice
gives us the characteristic polynomial p(λ) = −(λ− 4)(λ− 1)2.
The easy bit is noticing that

A− 4I3 =

 −2 −1 1
−1 −2 −1

1 −1 −2

 ∼
 1 0 −1

0 1 1
0 0 0

 so that

v3 = (1,−1, 1) is an eigenvector with eigenvalue 4.
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Example

Example (Continued)

Things get more interesting when we consider

A− I3 =

 1 −1 1
−1 1 −1

1 −1 1

 ∼
 1 −1 1

0 0 0
0 0 0

 giving us a basis

{w1,w2 } = { (1, 1, 0), (−1, 0, 1) } for the E1-eigenspace. As
predicted by the theory, 〈v3 , wk〉 = 0 for k = 1, 2 and v3 ∈ E⊥1 .
So now we apply Gram-Schmidt to {w1,w2 }. We let v1 = w1 and

v2 = w2 −
〈w2 , v1〉
〈v1 , v1〉

v1 = (−1, 0, 1)− −1

2
(1, 1, 0)

= (−1

2
,

1

2
, 1).

Thus β′ = { (1, 1, 0), (−1, 1, 2), (1,−1, 1) } is an orthogonal basis
of eigenvectors.
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Example

Example (Continued)

Now we get an orthogonal matrix Q =


1√
2
− 1√

6
1√
3

1√
2

1√
6
− 1√

3

0 2√
6

1√
3


such that D = QtAQ where D =

 1 0 0
0 1 0
0 0 4

.

Example

Now let’s orthogonally diagonalize A =
(

0 i
−i 0

)
. Here the

characteristic polynomial is p(λ) = λ2 − 1. Thus the eigenvalues
are ±1. Since A− I2 =

(−1 i
−i −1

)
∼
(
1 −i
0 0

)
, v1 = (i , 1) ∈ E1.

Similarly, we get (−i , 1) ∈ E−1. Then Q = 1√
2

(
i −i
1 1

)
is a unitary

matrix and(
1 0
0 −1

)
= Q∗AQ =

( −i√
2

1√
2

i√
2

1√
2

)(
0 i
−i 0

)( i√
2
−i√
2

1√
2

1√
2

)
.
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Break Time

Time for a break and some questions.
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Rigid Motions

Definition

Let V be a real inner product space. A function f : V → V is
called a rigid motion if it is distance preserving in that

‖f (x)− f (y)‖ = ‖x − y‖ for all x , y ∈ V . (∗)

Remark

Note that we are not making any assumptions on f except for (∗).
In particular, we are not asserting that f is linear. If f were linear,
then f would simply be an orthogonal transformation. A
translation—that is a map of the form f (x) = x + v0 for some
v0 ∈ V—is also a rigid motion. It is not hard to see that that
composition of rigid motions is a rigid motion.
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All Rigid Motions

Theorem

Suppose that f : V → V is a rigid motion of a real inner product
space V . Then there exists a unique orthogonal transformation
T ∈ L(V ) and a translation g such that f = g ◦ T . That is,
f (x) = T (x) + v0 for a unique orthogonal transformation T and
unique vector v0 ∈ V .

Remark

Note that we simply get an orthogonal transformation if v0 = 0V
and a translation if T = IV .

Dana P. Williams Math 24: Winter 2021 Lecture 26



Proof

Proof.

Let v0 = f (0V ) and define T : V → V by
T (x) = f (x)− f (0) = f (x)− v0. Since T is the composition of f
with translation by −v0, T is a rigid motion.

I claim that T is inner product preserving. Note that

‖T (x)‖ = ‖f (x)− f (0V )‖ = ‖x − 0V ‖ = ‖x‖.

Thus T is isometric. Furthermore,

‖T (x)− T (y)‖2 = 〈T (x)− T (y) , T (x)− T (y)〉
= ‖T (x)‖2 − 〈T (x) , T (y)〉 − 〈T (y) , T (x)〉+ ‖T (y)‖2

= ‖x‖2 − 2〈T (x) , T (y)〉+ ‖y‖2.
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Proof

Proof Continued.

Since T is a rigid motion, we also have

‖T (x)− T (y)‖2 = ‖x − y‖2 = ‖x‖2 − 2〈x , y〉+ ‖y‖2.

This means

〈T (x) , T (y)〉 = 〈x , y〉 for all x , y ∈ V .

This proves the claim.

Now I claim that T is linear.
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Proof

Proof Continued.

Consider

‖T (x+ay)− T (x)− aT (y)‖2

= ‖ [T (x + ay)− T (x)]︸ ︷︷ ︸
v

− aT (y)︸ ︷︷ ︸
w

‖2

= ‖v‖2 − 2〈v , w〉+ ‖w‖2

= ‖T (x + ay)− T (x)‖2 + a2‖T (y)‖2

− 2a〈T (x + ay)− T (x) , T (y)〉
= ‖(x + ay)− x‖2 + a2‖y‖2

− 2a
[
〈T (x + ay) , T (y)〉 − 〈T (x) , T (y)〉

]
= 2a2‖y‖2 − 2a

[
〈x + ay , y〉 − 〈x , y〉

]
= 2a2‖y‖2 − 2a

[
〈x , y〉+ a〈y , y〉 − 〈x , y〉

]
= 0

Therefore T (x + ay) = T (x) + aT (y) and T is linear as claimed.

Dana P. Williams Math 24: Winter 2021 Lecture 26



Proof

Proof Continued.

Since we already saw that T preserved inner products, it follows
that T is orthgonal and we have written f = g ◦ T for an
orthogonal operator T and a translation g(x) = x + v0.

To establish uniqueness, suppose f (x) = U(x) + u0 with U
orthogonal. Since v0 = f (0V ) = U(0V ) + u0 = u0, this implies
T (x) = U(x) for all x ∈ V . That is, U = T and we are done.
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Enough

1 That is enough for today.
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