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Let's Get Started

@ We should be recording.

@ The final will be administered in a manner similar to the
prelim and midterm exams and will available for download
Saturday March 13 at 8am until Monday March 15 at 10pm.

© The final will be cumulative. In particular, it will cover
whatever parts of Chapter 6 we manage to cover by
Wednesday. You will only be responsible for what we cover in
lecture.

@ Zinn's Law and the Law of Exponential Interest.

© But first, are there any questions from last time?
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Definition

A linear operator T € £(V) on an inner product space V is called
normal if T*T = TT*. Similarly, A € My ,(F) is called normal of
A*A = AA*.

Theorem

Let V' be a real or complex inner product space and let T € L(V)
be normal.

Q ForallveV,|T()|=|T*v)|
@ ForallceF, T —cly is normal.

© Ifv is an eigenvector for T with eigenvalue X\, then v is also
an eigenvector for T* with eigenvalue \.

Q If vi and v, are eigenvectors for T with distinct eigenvalues,
then vi and v, are orthogonal.

V.
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Suppose that T is a linear operator on a finite-dimensional inner
product space V' whose characteristic polynomial splits. If T is
normal, then T is orthogonally diagonalizable.

Corollary

Suppose that T is a linear operator on a finite-dimensional
complex inner product space. Then T is orthogonally
diagonalizable if and only if T is normal.

Corollary

Suppose that T is a self-adjoint operator on a finite-dimensional
real inner product space. Then T is self-adjoint if and only if T is
orthogonally diagonalizable.
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Unitary and Orthogonal Operators

Suppose that V is an inner product space over F and T € L(V).
Then T is called isometric if || T(v)|| = ||v|| for all v € V. If

F = R, the an isometric operator is called an orthogonal operator
and if F = C an isometric operator is called a unitary operator.

Let Ty : R?> — R? the rotation operator whose matric with respect
to the standard basis is Ay = (2?:((3)) _Z')ns((ee))) It is clear—either
geometrically or by a short calculation—that each Ty is isometric.

Hence Ty is an orthogonal operator.
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Least We Forget

Let V be a finite-dimensional vector space. Suppose that
T,Se€ L(V)and TS = ly. Then both T and S are invertible with
T 1=SandS1=T.

Let 5 be an ordered basis for V. Then [TS]s = [T]g[S]s.
Therefore [T]g is invertible and [T]E1 = [S]. This implies T is

invertible and that [T 1|5 = [T]E1 = [S]s. Hence T~ = S. The
proof for S is similar. O
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Suppose that U is a self-adjoint operator on an inner product
space V. Suppose also that

(x,U(x))=0 forallxeV.

Then U = Ty. (Recall that Ty is the zero operator on V.)

Since T is self-adjoint, it is orthogonally diagonalizable and there

is an (orthonormal) basis 8 = { v1,..., v, } of eigenvectors for T
with eigenvalues A1,..., Ap, respectively. Then for 1 < k < n, we
have

)\k = )\k<vk 9 Vk> — <)\ka y Vk> — <T(Vk) 5 Vk> =0.

Therefore Ay = 0 and T(vx) = 0 for all v, € 3. Since 3 is a basis,
this implies T = Ty as claimed. []
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Isometric Operators

Let T € L(V) for a finite-dimensional inner product space V.
Then the following are equivalent.

@ T is isometric.

@ T isinvertible with T~ = T*.

Q@ TT*=ly.

Q T"'T =1Iv.

@ T preserves inner products in that (T(x), T(y)) = (x, y) for
all x,y € V.

If B is an orthonormal basis for V, then T(3) is an
orthonormal basis for V.

@ The is an orthonormal basis for V' such that T () is an
orthonormal basis for V.

©
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Proof

We have (2)<=(3)<=(4) since V is finite dimensional.
(1)==(4): Forall x e V,

(s x) = Xl = TP =(T(x), T(x)) = {x, T*T(x)).

Therefore (x , (Iy — T*T)(x)) =0 for all x € V. Since
U= Iy — T*T) is self-adjoint by our lemma, T*T = I,. Hence T
is invertible and T—1 = T*.

(4)==(5): We have (x,y) = (T"T(x), y) = (T(x), T(y)).

(5)=(6): Let B ={wv1,...,v,} be an orthonormal basis for V.
Then T(5) ={T(v1),..., T(vn) } and

(T(vi), T(vj)) = (vi,v;) = 6. This shows that T(3) is an
orthonormal basis as well.

(6)==(7): This is immediate.
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Proof

Proof Continued.

(7)==(1): Suppose that 8 = { v1,..., v, } is an orthonormal basis
and that v € V. Then v =} 7, a;v; (where a; = (v , vj)). Then

n n n n n
IVIE = O v > avi) =) ) aa(vi, v = > la
j=1 k=1 j=1

j=1 k=1

But T(v) =373 T(v;). Thusif T(8) is also an orthonormal
basis, then same computation shows that

IT(W)I* = ZI%F—HVII2

Thus T is isometric. ]
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Time for a brake and some questions.
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We say that A € M,»»(R) is orthogonal if A'A = I, = AAt. We
say that A € Mpxn(C) is unitary if A*A = I, = AA*.

If Ais an orthogonal real n X n-matrix then it is unitary when
viewed as an element of M,y ,(C).
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Unitary Matrices

Let A € Mpxn(C). Then the following are equivalent.

Q A is unitary.

Q A*=A"1
QO AA=1,.
Q AA* =I,.

© A* is unitary.

@ The rows of A are an orthonormal basis for C"

@ The columns of A are an orthonormal basis for C".

| leave it to you to sort our the corresponding statement for
orthogonal real matrices.
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Proof

Proof

The equivalence of (1) and (2) is essentially by definition. The
equivalence of (2), (3), and (4) is general matrix inverse nonsense.
Since A** = A, it is clear that (5) is equivalent to (1)—(4).

Let v; be the j'i-column of A. Then

n
(A"A)j =D _(A)ixAij = ZAk,AkJ (vj , vi)
k=1

Thus A*A = I, if and only if (v; , v;) = J;;. Thatis, (6)<=(3). A
similar argument shows that (7)<=(4). O
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Orthgonal Diagonalization

RENEILS

Suppose that A is either a complex normal n x n-matrix [or a
symmetric real n X n-matrix]. Then our results from Friday's
lecture applied to L, imply that there is an orthonormal basis

B ={wvi,...,vn} of eigenvectors for A. If we let U =[v1 - v,
be the matrix whose columns are the eigenvectors from 3, then we
have D = Q 1AQ where D is diagonal. Since f is orthonormal, @
is unitary [orthogonal]. Thus

D= QAR

and we say that A is unitarily equivalent [orthogonally equivalent]
to a diagonal matrix. In general, we say that two matrices are
unitarily equivalent [orthogonally equivalent] if there is a unitary
[orthogonal] matrix P such that A= P*BP.

Dana P. Williams Math 24: Winter 2021 Lecture 26



An Example

2 -1 1
Let A= —1 2 —1 |. Since A is symmetric, we ought to
1 -1 2

be able to orthogonally diagonalize A. Suppose that someone nice
gives us the characteristic polynomial p(\) = —(\ — 4)(A — 1)2.
The easy bit is noticing that

-2 -1 1 1 0 -1
A—A43 = -1 -2 -1 ~1 0 1 1 so that
1 -1 -2 00 O

vz = (1,—1,1) is an eigenvector with eigenvalue 4.
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Example

Example (Continued)

Things get more interesting when we consider

1 -1 1 1 -1 1
A—hL=1| -1 1 -1 |~ 0 0 O | giving us a basis
1 -1 1 0 0O

{wi,wo } ={(1,1,0),(—1,0,1) } for the Ej-eigenspace. As
predicted by the theory, (v3 , wy) = 0 for k = 1,2 and v3 € Ei-.
So now we apply Gram-Schmidt to { w1, w» }. We let vi = wy and

(wa , v1) -1
oy — M2,V 10.1)— —(1.1
V2 W2 <V1,V1> Vi ( 0, ) 2 ( ) ’0)
11
=(—=.=-.1
(2727)

Thus ' = {(1,1,0),(-1,1,2),(1,—1,1) } is an orthogonal basis
of eigenvectors.
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Example
Example (Continued)

Now we get an orthogonal matrix @ =

Shabsh
Sl

such that D = QtAQ where D =

O = O~ N

~ o o o&""&"“

o O

Now let's orthogonally diagonalize A= ( _%). Here the
characteristic polynomial is p()\) = A2 — 1. Thus the eigenvalues
are £1. Since A— b= (1 ')~ (35)), vu=(i,1) € E1.

Similarly, we get (—i,1) € E_;. Then Q = f(’ 7') is a unitary
matrix and

2

(0-1)=Q@AQ=(%

S-S
S-S
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Time for a break and some questions.
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Rigid Motions

Definition
Let V be a real inner product space. A function f : V — V' is
called a rigid motion if it is distance preserving in that

(<) = f)l = lIx =yl forallx,y e V. (*)

RENEILS

Note that we are not making any assumptions on f except for (x).
In particular, we are not asserting that f is linear. If f were linear,
then f would simply be an orthogonal transformation. A
translation—that is a map of the form f(x) = x + v for some

vp € V—is also a rigid motion. It is not hard to see that that
composition of rigid motions is a rigid motion.
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All Rigid Motions

Suppose that f : V — V is a rigid motion of a real inner product
space V. Then there exists a unique orthogonal transformation
T € L(V) and a translation g such that f = go T. That is,
f(x) = T(x) + v for a unique orthogonal transformation T and
unique vector vo € V.

Note that we simply get an orthogonal transformation if vy = Oy
and a translation if T = /.
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Proof

Proof.

Let vo = f(Oy) and define T : V — V by
T(x) = f(x) — f(0) = f(x) — vp. Since T is the composition of f
with translation by —vg, T is a rigid motion.

| claim that T is inner product preserving. Note that
[T = [1£(x) = £(OV)[| = lIx = Ov || = [|x]|-
Thus T is isometric. Furthermore,

ITG) = TWI? = (T(x) = T(y), T(x) = T(y))
= ITCIP = (T (), T)) = (T (), T + T2
=[xl = 2(T(x) , T()) + Iyl
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Proof

Proof Continued.
Since T is a rigid motion, we also have

IT(x) = T = llx = ylI? = IxII> = 2(x, y) + Iy II*-
This means
(T(x), T(y))={(x,y) forall x,ye V.

This proves the claim.

Now | claim that T is linear. my
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Proof Continued.

Consider

IT(x+ay) = T(x) —aT(y)[
= | [T(x+ay) = T(x)]—aT(y) |
——

\4 w

= [Iv[[® = 2{v , w) + [|w]®
= [IT(x+ay) — TC)I? + 2 T()II?
—2a(T(x+ay) — T(x), T(y))
= [I(x + ay) = x|I> + &[ly|I?
—2a[(T(x+ay), T(y)) —(T(x), T(y))]
=22°|ly|I> — 2a[(x + ay , y) — (x, y)]
=2a°|ly|l> —2a[(x, y) + aly ,y) — (x,¥)] =0

Therefore T(x +ay) = T(x)+ aT(y) and T is linear as claimed.




Proof

Proof Continued.

Since we already saw that T preserved inner products, it follows
that T is orthgonal and we have written f = go T for an
orthogonal operator T and a translation g(x) = x + v.

To establish uniqueness, suppose f(x) = U(x) + up with U
orthogonal. Since vy = f(0y) = U(Oy) + ug = up, this implies
T(x) = U(x) for all x € V. Thatis, U= T and we are done. []

V.
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@ That is enough for today.
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