Math 24: Winter 2021 Lecture 27

Dana P. Williams
Dartmouth College

Wednesday, March 10, 2021

Let's Get Started

(1) We should be recording.
(2) The final will be administered in a manner similar to the prelim and midterm exams and will available for download Saturday March 13 at 8am until Monday March 15 at 10pm.
(3) You will have 6 hours to work the final.
(9) I will have office hours Thursday and Friday 10-11.
(3) But first, are there any questions from last time?

Review

Theorem

Let $T \in \mathcal{L}(V)$ for a finite-dimensional inner product space V.
Then the following are equivalent.
(1) T is isometric.
(2) T is invertible with $T^{-1}=T^{*}$.
(3) $T T^{*}=I_{V}$.
(1) $T^{*} T=I_{V}$.
(6) T preserves inner products in that $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all $x, y \in V$.
(0) If β is an orthonormal basis for V, then $T(\beta)$ is an orthonormal basis for V.
(1) There is an orthonormal basis β for V such that $T(\beta)$ is an orthonormal basis for V.

Review

Definition

We say that $A \in M_{n \times n}(\mathbf{R})$ is orthogonal if $A^{t} A=I_{n}=A A^{t}$. We say that $A \in M_{n \times n}(\mathbf{C})$ is unitary if $A^{*} A=I_{n}=A A^{*}$.

Remark

If A is an orthogonal real $n \times n$-matrix then it is unitary when viewed as an element of $M_{n \times n}(\mathbf{C})$.

Review

Proposition

Let $A \in M_{n \times n}(\mathbf{C})$. Then the following are equivalent.
(1) A is unitary.
(2) $A^{*}=A^{-1}$.
(3) $A^{*} A=I_{n}$.
(4) $A A^{*}=I_{n}$.
(6) A^{*} is unitary.
(0) The rows of A are an orthonormal basis for \mathbf{C}^{n}
(0) The columns of A are an orthonormal basis for \mathbf{C}^{n}.

Remark

I left the proof of this and the corresponding statement for orthogonal matrices to you. Is so doing, you will have observed that A is unitary or orthogonal exactly when L_{A} is isometric (aka orthogonal or unitary).

A Little More Business

Lemma

Let T be an orthogonal operator on \mathbf{R}^{2}. Then $\operatorname{det}(T)= \pm 1$. If $\operatorname{det}(T)=1$ then T is a rotation.

Proof.

Let σ be the standard ordered basis in \mathbf{R}^{2} and $A=[T]_{\sigma}$. Then $A^{t}=\left[T^{*}\right]$ and since T is orthogonal, $T^{*} T=I_{\mathbf{R}^{2}}$ and $I_{n}=\left[T^{*} T\right]_{\beta}=A^{t} A$. Then $1=\operatorname{det}\left(A^{t} A\right)=\operatorname{det}(A)^{2}$. Hence $\operatorname{det}(T)= \pm 1$.

Since T is orthogonal, $T(\sigma)=\left\{T\left(e_{1}\right), T\left(e_{2}\right)\right\}$ is also an orthonormal basis for \mathbf{R}^{2}. Then $T\left(e_{1}\right)$ is a unit vector and there is θ such that $T\left(e_{1}\right)=(\cos (\theta), \sin (\theta))$. There are two possibilities for $T\left(e_{2}\right)$. Either $(-\sin (\theta), \cos (\theta))$ or $-(-\sin (\theta), \cos (\theta))$. Only the former gives $\operatorname{det}(A)=1$ and then $A=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ and T is rotation by θ.

In Truth Is There No Beauty?

Example

A general quadratic equation in two variables is of the form

$$
f(x, y)=a x^{2}+2 b x y+c y^{2}+d x+e y+f
$$

We are interested in the graph of $f(x, y)=0$. If $b=0$ and $a c \neq 0$, then we can "complete the square" twice so that

$$
a x^{2}+c y^{2}+d x+e y+r=a\left(x-x_{0}\right)^{2}+c\left(y-y_{0}\right)^{2}+f^{\prime} .
$$

So we may as well concentrate on the equation

$$
a x^{2}+2 b x y+c y^{2}
$$

and try to eliminate the " $x y$ "-term.

Getting Rid of $x y$

Using matrix multiplication, we can write

$$
a x^{2}+2 b x y+c y^{2}=X^{t} A X=\langle A X, X\rangle
$$

where

$$
A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \quad \text { and } \quad X=\binom{x}{y}:
$$

Just check that $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)\binom{x}{y}=\binom{a x+b y}{b x+c y}$ and compute the (standard) inner product with $\binom{x}{y}$.

Since A is symmetric, it can be orthogonally diagonalized. Thus there is an orthogonal matrix Q such that $D=Q^{t} A Q$ is diagonal. This means that the columns of Q form an orthonormal basis $\beta=\left\{v_{1}, v_{2}\right\}$ of eigenvectors for \mathbf{R}^{2}. Let $D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$ where λ_{k} is the eigenvalue for v_{k}. If $\operatorname{det}(Q)=1$, then Q is a rotation. If instead, $\operatorname{det}(Q)=-1$, then we can simply interchange v_{1} and v_{2} so that Q is indeed a rotation.

New Coordinates

Now we work in β coordinates. If $X=(x, y) \in \mathbf{R}^{2}$ we let $X^{\prime}=\left(x^{\prime}, y^{\prime}\right)=[(x, y)]_{\beta}=[l]_{\sigma}^{\beta} X=Q^{-1} X=Q^{t} X$.
Since we made sure that Q was a rotation matrix, Q^{t} is also a rotation matrix and the β-coordinates $\left(x^{\prime}, y^{\prime}\right)$ are obtained from (x, y) simply by rotation around the origin by a fixed angle θ.

Then $X=Q X^{\prime}$, and

$$
\begin{aligned}
X^{t} A X & =\left(Q X^{\prime}\right)^{t} A\left(Q X^{\prime}\right)=\left(X^{\prime}\right)^{t} Q^{t} A Q X^{\prime}=\left(X^{\prime}\right)^{t} D X^{\prime} \\
& =\lambda_{1}\left(x^{\prime}\right)^{2}+\lambda_{2}\left(y^{\prime}\right)^{2}
\end{aligned}
$$

Classical Conics

Figure: The ellipse $3 x^{2}+7 y^{2}=42$

Now we recall that equations of the form

$$
\frac{x^{2}}{a_{2}}+\frac{y^{2}}{b^{2}}=1 \quad a>0 \text { and } b>0
$$

give us an ellipse with axes
$(-a, a)$ and $(-b, b)$. In particular, the equation $3 x^{2}+7 y^{2}=42$ is the ellipse drawn at left.

Hyperbola

Figure: The Hyperbola $3 x^{2}-7 y^{2}=3$

We also know that equations of the form

$$
\frac{x^{2}}{a_{2}}-\frac{y^{2}}{b^{2}}=1 \quad a>b>0
$$

give us a hyperbola with asymptotes $y= \pm \frac{b}{a} x \ln$ particular, the equation $3 x^{2}-7 y^{2}=3$ is the ellipse drawn at left.

Rotate

Example

Now consider the graph of $5 x^{2}-4 x y+5 y^{2}=42$. We need to eliminate the $x y$-term. Therefore we consider the symmetric matrix $A=\left(\begin{array}{rr}5 & -2 \\ -2 & 5\end{array}\right)$. The characteristic polynomial is $p(\lambda)=\lambda^{2}-10 \lambda+21$. Hence the eigenvalues are 3 and 7 . You can check that $w_{1}=(1,1)$ and $w_{2}=(-1,1)$ are eigenvectors. Then $Q=\left(\begin{array}{c}\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array} \frac{1}{\sqrt{2}}\right)$ satisfies $\operatorname{det}(Q)=1$ and is rotation by $\frac{\pi}{4}$. Then

$$
42=5 x^{2}-4 x y+5 y^{2}=X^{t} A X=\left(X^{\prime}\right)^{t} D X^{\prime}=3\left(x^{\prime}\right)^{2}+7\left(y^{\prime}\right)^{2}
$$

and we get our original ellipse rotated by $\frac{\pi}{4}$.

Figure: The Graph of $5 x^{2}-4 x y+4 y^{2}=42$

Example

Figure: The Graph of $x^{2}-8 x y-5 y^{2}=3$

Example

Now consider
$x^{2}-8 x y-5 y^{2}=3$. Here
$A=\left(\begin{array}{cc}1 & -4 \\ -4 & -5\end{array}\right)$. We have
$p(\lambda)=\lambda^{2}+4 \lambda-21$ with
eigenvalues 3 and -7 and corresponding eigenvectors $w_{1}=(2,-1)$ and $w_{2}=(1,2)$.
Now $Q=\left(\begin{array}{cc}\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\end{array}\right)$ is rotation by $\arcsin \left(-\frac{1}{\sqrt{5}}\right)$ (about -26 degress). And we get

$$
\begin{aligned}
3 & =x^{2}-8 x y-5 y^{2}=X^{t} A X \\
& =\left(X^{\prime}\right)^{t} D X^{\prime}=3\left(x^{\prime}\right)^{2}-7\left(y^{\prime}\right)^{2}
\end{aligned}
$$

Degenerate Example

Example

Now let's consider $x^{2}+4 x y+4 y^{2}+2 y=4$. Again we start with $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$. The eigenvalues are 0 and 5 with eigenvectors $w_{1}=(2,-1)$ and $w_{2}=(1,2)$. Then $Q=\left(\begin{array}{cc}\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\end{array}\right)$ is a rotation by $\arcsin \left(-\frac{1}{\sqrt{5}}\right)$ (about -26 degress). Now in $\left(x^{\prime}, y^{\prime}\right)$ coordinates, our equation is

$$
5\left(y^{\prime}\right)^{2}+2\left(-\frac{1}{\sqrt{5}} x^{\prime}+\frac{2}{\sqrt{5}} y^{\prime}\right)=4
$$

Then after some algebra, this becomes

$$
5\left(y^{\prime}-\frac{2}{5 \sqrt{5}}\right)^{2}=\frac{2}{\sqrt{5}}\left(x^{\prime}+\frac{52}{5 \sqrt{5}}\right)
$$

which is a parabola with vertex at $\left(-\frac{52}{5 \sqrt{5}}, \frac{2}{5 \sqrt{5}}\right)$.

Picture

Figure: The Graph of $x^{2}+4 x y+4 y^{2}+2 y=4$

Example

Of course we can do the similar things in higher dimensions. The quadratic equation in three variables

$$
a x^{2}+b y^{2}+c z^{2}+2 d x y+2 e y z+2 f x z
$$

can be written as $X^{t} A X$ for $A=\left(\begin{array}{ccc}a & d & f \\ d & b & e \\ f & e & c\end{array}\right)$. Since A is symmetric, we can find an orthonormal basis $\beta=\left\{v_{1}, v_{2}, v_{3}\right\}$ for \mathbf{R}^{3} so that in β-coordinates we get

$$
\lambda_{1}\left(x^{\prime}\right)^{2}+\lambda_{2}\left(y^{\prime}\right)^{2}+\lambda_{3}\left(z^{\prime}\right)^{2}
$$

But the details are best left for another day.

Enough

(1) That is enough for Math 24 .

