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1. The basic computational algorithms for primes

Problem 1 (10 points). This problem asks you to write two very closely related
functions.

First, write a function, isprime(n), which accepts a positive integer n and deter-
mines whether or not n is prime using trial division. Your program should be able
to test numbers as large as 10 or 11 digits more or less instantaneously, even in the
worse case (namely, when n is prime). The function should return the boolean value
‘True’ if n is prime, and ‘False’ if n is composite.

Second, write a function, divisor(n), which accepts a positive integer n ≥ 2 and
returns the smallest positive divisor of n greater than 1. Again, your program should
run more or less instantaneously for numbers as large as 10 or 11 digits.

Problem 2 (10 points). Write a function, eratosthenes(n), which accepts a positive
integer n ≥ 2 and returns a list consisting of all the prime numbers from 2 to n, in
increasing order. The function should actually implement the sieve of Eratosthenes
to find a list of all the prime numbers between 2 and n instead of calling isprime
repeatedly on integers from 1 to n. Your function should run in under a second for
n up to 106. (If your computer is a bit old, it’s possible that your program will take
slightly longer than 1 second to run if n = 106. That’s okay.)

An interesting experiment to try on your own is to implement a function which
finds all the primes from 2 to n by repeatedly running isprime (which uses trial
division) on every integer from 2 to n. Compare the run time of this function against
the eratosthenes function you wrote. You should find that the eratosthenes function
is faster, at least when n is reasonably large (I noticed a difference in speed around
n = 106.) If you want to be really precise, you can learn how to use the timeitmodule
in Python, which lets you time short pieces of code.

The next problem will ask you to find a factorization of an arbitrary positive integer
n ≥ 2. To do so, we need a reasonably compact way of describing a factorization.
Recall that the factorization of n has the form

n = pe11 . . . perr ,
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where the ei are various positive integers, and the pi distinct primes. We could
represent this information several ways. Perhaps the most natural is some sort of
data structure which pairs each pi with its exponent ei. One possibility is to return
a list or tuple of pairs (pi, ei), but we will take this opportunity to introduce a new
and very useful data structure known as the dictionary .

A dictionary is like a list, except that you can use a much wider variety of objects
as indices. A list always requires you to use consecutive integers, starting at 0, as
the indices for that list, but a dictionary lets you use numbers or strings, or tuples
of numbers or strings, as indices. The indices of a dictionary are known as keys.
(You are allowed to use any immutable object; mutable objects like lists or other
dictionaries are not allowed as keys. The distinction between the two would take
a bit long for us to discuss here, and the reasons why only immutable objects are
allowed as keys are a bit too technical for us to explain right now.)

Recall that a tuple is delimited by (, ) and a list by [, ]. A dictionary is delimited
by {, }. Despite the similarity to set notation, dictionaries should not be thought of
as sets! On the other hand, you can think of a dictionary as an implementation of a
mathematical function.

You can create and initialize a dictionary as follows:

>>> d = { ‘ ‘ yes ” : 4 , ‘ ‘ no” : 2 , 5 : 7 , 2 : ” blah ”}
>>> d
{ ‘ yes ’ : 4 , 2 : ‘ blah ’ , 5 : 7 , ‘ no ’ : 2}
>>> d [ ” yes ” ]
4
>>> d [ ” not here ” ]

Traceback (most r e c ent c a l l l a s t ) :
F i l e ”<py sh e l l#13>”, l i n e 1 , in <module>

d [ ” not here ” ]
KeyError : ’not here ’

Objects which serve as indices to a dictionary are called keys of that dictionary. The
object that is associated to a particular key is called a value, and if k is a key of d,
then k, d[k] is called a key-value pair of d.

Notice that if you try to use objects which are not keys of d, you get an error.
On the other hand, assuming that you initialized d as above, you can create new
key-value pairs by simply assigning something to a new key, just like how variables
are defined by being assigned to them:

>>> d [ ”new” ] = ” t h i s i s new”
>>> d
{ ’ new ’ : ’ t h i s i s new ’ , ’ yes ’ : 4 , 2 : ’ blah ’ , 5 : 7 , ’ no ’ : 2}

If you want a list of keys for the dictionary d, then d.keys() will return a list
containing the keys, in no particular order. Similarly, d.values() returns a list of
values of d, and d.items() returns a list of tuples, where each tuple contains a key
and its associated value.

>>> d . keys ( )
[ ’new ’ , ’ yes ’ , 2 , 5 , ’ no ’ ]
>>> d . va lue s ( )
[ ’ t h i s i s new ’ , 4 , ’ blah ’ , 7 , 2 ]

http://docs.python.org/tutorial/datastructures.html#dictionaries
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>>> d . items ( )
[ ( ’new ’ , ’ t h i s i s new ’ ) , ( ’ yes ’ , 4) , (2 , ’ blah ’ ) , (5 , 7) , ( ’ no ’ , 2) ]

Problem 3 (10 points). Write a function, factor(n), which given a positive integer
n ≥ 1, returns a dictionary containing the prime factorization of n, where the key-
value pairs are the primes appearing in the factorization as keys and the exponents
as values. For example, factor(15) should return {3 : 1, 5 : 1}. If factor is called with
n = 1, factor should return the empty dictionary.

2. Statistical experiments with primes

In this section, we will use the functions we wrote in the previous section to help
us gather some basic numerical data on distribution of primes. These are the sorts
of ‘numerical experiments’ that mathematicians like Euler or Gauss might have done
in their preliminary studies on counting prime numbers, except that they had to do
all their calculations by hand!

Problem 4 (5 points). Write a function, primepi(x), which given a positive number
x ≥ 2 returns the number of primes ≤ x. For example, primepi(2) would return 1,
while primepi(3.5) would return 2. Your function should work not just with integers,
but also with floating point numbers. You can use any of the functions you wrote
earlier in this assignment; your function should run under 1s for x ≤ 106.

Recall that the prime number theorem says that

π(x) ∼ x

log x
∼

∫ x

2

1

log t
dt.

We will investigate whether x/ log x or li(x) =
∫ x

2
1

log t
dt is a better estimate for π(x),

at least for ‘small’ x.
It is relatively easy to get Python to calculate the value of x/ log x. The function

log x is not loaded into the Python interpreter when you initially boot it up, but
it is available in the math module. A module is a collection of prewritten code,
either in Python or another language (most frequently C), which provides Python
functions (and possibly other Python objects) for use. For example, the math module
contains definitions for several common mathematical functions besides log x, such as
the various trigonometric functions. The math module also contains approximations
to π and e which are quite accurate.

To access the functions in the math module, you need to import it. You do so as
follows:

>>> import math

At this point, the functions in the math module are available for you to use! To use,
say, the log function, you would use the function math.log:

>>> math . l og (5 )
1.6094379124341003
>>> math . l og (math . e ∗∗2)
2 .0

http://docs.python.org/library/math.html
http://docs.python.org/tutorial/modules.html
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The reason you need to prefix each function with ‘math.’ is because each function is
part of the math module, and if you use the ‘import math’ command to import the
math module, Python requires that you keep track of the fact that these functions are
part of the math module. However, there is a way to circumvent this extra typing.
If you use the command ‘from math import log’, then you can use the log function
by typing in log instead of math.log:

>>> from math import l og
>>> l og (5 )
1.6094379124341003

You use ‘from math import log’ without using ‘import math’ earlier. As a matter of
fact, if you want to have access to every function in the math module without typing
‘math.’, you can use the command ‘from math import *’. However, use of this in
code is frowned upon, because it can lead to unexpected collisions with user-defined
functions. For example, maybe you define a function in some code you write, and
then use ‘from [some module] import *’. If [some module] contains a function with
the same name as yours, that function will be used instead of your function, which
could lead to all sorts of confusion and hard-to-trace bugs. You should avoid using
‘from [module] import *’ in code you write, but it is fine to use this command in
interactive sessions.

The Python standard library contains many, many modules which are prepackaged
with installations of Python, which can be used to do many, many different things.
A lot of the power of Python comes from the fact that the standard library is so vast
and (for the most part) easy to use.

In summary, once we know of the existence of the math module, we can easily
calculate x/ log x. However, how do we estimate the logarithmic integral? We can’t
find an antiderivative of 1/ log t in terms of any simple combination of elementary
functions, so instead we will numerically estimate the logarithmic integral. To do so,
we will use Simpson’s rule, from calculus.

Simpson’s rule tells us that if we want to numerically estimate
∫ b

a
f(t) dt, we can

subdivide the interval [a, b] into n equal subintervals, where n is an even number. Let
x0, x1, . . . , xn be the endpoints of these intervals, arranged in increasing order. Then

Simpson’s rule estimates
∫ b

a
f(t) dt by the following expression:

∫ b

a

f(t) dt ≈ b− a
3n

(f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+. . .+4f(xn−1)+f(xn)).

The first and last terms are f(x0), f(xn) multiplied by 1, whereas the rest of the
terms are multiplied by coefficients which alternate between 4 and 2. The fact that
the second-to-last term is 4f(xn−1) instead of 2f(xn−1) is due to the fact that n is
even.

Problem 5 (10 points). Write a function, simpsons li(n), which accepts an even
integer n ≥ 4 and returns an estimate for li(n) using Simpson’s rule, where we divide
the interval [2, n] into n − 2 equal subintervals of length 1. Your function should
return a floating point number.

http://docs.python.org/library/
http://en.wikipedia.org/wiki/Simpson's rule
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A fun numerical experiment to try is to compare how accurate li(x) and x/ log x
are when used as estimates for π(x). One way to do this is to compute the ratios of
π(x) with li(x) and x/ log x, and see how rapidly they converge to 1.

The next problem asks you to numerically investigate the prime number race 1 mod
4 vs 3 mod 4. Recall that π(x; q, a) is the number of primes p with p ≤ x, p ≡ a mod q.

Problem 6 (5 points). Write a function, primerace 3vs1 mod4(n), which accepts an
odd integer n ≥ 3 and returns π(n; 4, 3)−π(n; 4, 1). This function is positive exactly
when there are more primes of the form 4k + 3 than 4k + 1 when looking at primes
≤ n.

Using the above function (or perhaps a slight modification), what is the first odd
integer n for which π(n; 4, 1) > π(n; 4, 3)? What is the second? You may need to
modify the above function slightly to answer these questions in a reasonable amount
of time (although you do not need to turn the answers to these questions in.)

3. Useful information

3.1. Problems to hand in. In your file which contains the code you submit, make
sure that you can run the file in IDLE without error and that all functions are
loaded appropriately. In other words, if you open the .py file you submit and run it
in IDLE (using the Run Module command under the Run submenu), there should
be no error messages in the interactive interpreter, and you should be able to use
the functions you wrote. Also make sure that you spell the names of the required
functions correctly! (On the other hand, the names of the arguments passed into
the function can be arbitrary, as long as the function accepts the correct number of
arguments.) Finally, please put your name near the top of the file in a comment (use
the # symbol to write comments; Python will ignore everything on that line which
comes after the #).

• Turn in problems 1, 2, 3, 4, 5, and 6 in a single file named [lastname]2.py
(without brackets around your last name.)

3.2. Test cases. Starting with this assignment we will use a better method for pro-
viding test cases. The Python standard library contains a handy module called
doctest, which provides a lightweight method for testing test cases. In the assign-
ment page, the template .py file will contain a lengthy docstring at the beginning of
each function, which contains the test cases we provide for each function (if there are
any).

Also, at the end of the file, there will be a short snippet of code, which will only
run if you ask IDLE to execute the entire file with the ‘Run Module’ command.
The template we provide will include a ‘verbose=True’ switch, which will cause your
program to output extensive information on the results of each test case. If you would
like to suppress the output, and only be informed if cases fail, remove ‘verbose=True’
from within the parentheses of the doctest.testmod function.

For questions that use floating point numbers, we only test whether your answer
is within some degree of accuracy. It is conceivable for your function to fail those
testcases even if it is correct because of the way floating point arithmetic is handled
on the machine being used.

http://docs.python.org/library/doctest.html
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Usage of the test cases is optional. If you want, you can delete the docstrings,
delete the code at the end which calls doctest.testmod, or just not use the template
file provided.
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