
ASSIGNMENT 3: SOLVING CONGRUENCES
DUE WEDNESDAY, NOVEMBER 30, 2011 AT 11:59PM

Contents

1. Linear congruences 1
2. Polynomial congruences 2
3. Useful information 3
3.1. Problems to hand in 3
3.2. Test cases 3

For this assignment, you will need a functioning gcd algorithm, Bezout algorithm,
and possibly a factorization algorithm.

1. Linear congruences

We start by writing a handy function for much of what follows.

Problem 1 (5 points). Write a function, modinverse(a, n), which given a positive
integer n and an integer a, finds the multiplicative inverse of a mod n, if it exists.
More precisely, if this inverse exists, the function should return the integer b with
0 ≤ b < n, such that ab ≡ 1 mod n, and if the inverse does not exist, the function
should return the ‘None’ type. The function should run nearly instantaneously even
if a, n have hundreds of digits in them. (You type ‘return None’ to do this.)

Make sure this function works, because you will probably want to use it in several
of the following problems!

The next three problems provide a complete implementation of a Chinese Remain-
der Theorem algorithm.

Problem 2 (10 points). Write a function, simplecrt(a, n), which given two lists a =
[a1, . . . , ak], n = [n1, . . . , nk] of identical length, where the ni are mutually coprime
positive integers and the ai arbitrary integers, finds the unique solution to the system
of linear congruences x ≡ ai mod ni, for 1 ≤ i ≤ k. More precisely, the function
returns a tuple x, n, where x mod n is the set of solutions to this system, with x the
smallest non-negative solution.

The function should run nearly instantaneously even for data consisting of hundreds
of digits of information. You may assume that the ni you are given in this function
are mutually coprime.

Because of the speed requirement of the previous problem, the trial-and-error
method you use to solve simultaneous systems by hand is not going to work for
all test cases. Instead, you should look at the proof of the CRT, which provides an
explicit construction of the unique solution.

1



2 ASSIGNMENT 3: SOLVING CONGRUENCES

Problem 3 (10 points). Write a function, compatibility(p, a, e), which given a prime
number p, and two lists a = [a1, . . . ar], e = [e1, . . . , er], where the ai are arbitrary
integers and the ei positive integers, determines whether there is a solution to the
system of linear congruences x ≡ ai mod pei . More precisely, if there is a solution,
the function should return the smallest non-negative solution, and if not, the function
should return the None type. The function should run more or less instantaneously
even for data consisting of hundreds of digits of information.

Be aware that the ei are not necessarily sorted in increasing order!

Problem 4 (5 points). Write a function, lcm(n), which given a list n = [n1, . . . , nr]
of positive integers, returns lcm(n1, . . . , nr), the least common multiple of the ni. The
function should run more or less instantaneously for input data consisting of several
hundred digits.

Problem 5 (10 points). Write a function, crt(a, n), which given two lists a =
[a1, . . . , ar], n = [n1, . . . , nr], where the ai are arbitrary integers and the ni are ar-
bitrary positive integers, which tries to find solutions to the system x ≡ ai mod ni.
More precisely, if there is a solution, the function should return a tuple x, n, where
x mod n is the unique solution to the system x ≡ ai mod ni, with x the smallest non-
negative solution. If there is no simultaneous solution, the function should return
‘None’. The function should run more or less instantaneously for ni of size about 10
digits.

You can get up to 3 points of extra credit if you can write a version of this function
which can handle input data of hundreds of digits in length almost instantaneously.

2. Polynomial congruences

There are a variety of ways to represent a polynomial in a computer, but for our
purposes we will use one of the simplest methods: we will represent a polynomial
anx

n + . . . + a0 by a list [a0, a1, . . . , an]. For example, we will represent f(x) =
x2 + 3x− 7 by the list [−7, 3, 1], and the polynomial f(x) = 3 by the list [3].

Problem 6 (10 points). Write a function, hensel(p, e, x, f), which given a polynomial
f represented as a list [a0, . . . , an], a solution x to f(x) ≡ 0 mod pe, a prime number
p, and a positive exponent e, finds all lifts of x mod pe which solve f(x) ≡ 0 mod pe+1

using Hensel’s Lemma. More specifically, the function should return None if there
are no lifts of x mod pe which solve f(x) ≡ 0 mod pe+1, and otherwise should return
a list of all lifts which are solutions. (By Hensel’s Lemma, there should be either 1 or
p elements in this list.) The function should run more or less instantaneously even if
there are hundreds of digits in the input.

In the process of solving the above problem you will probably want to look at the
proof of Hensel’s Lemma in the case where p - f ′(x) to find a constructive method for
finding the unique lift which solves f(x) ≡ 0 mod pe+1 without using trial-and-error.

As the previous problem makes clear, if you are working with polynomials on
a computer, you will almost certainly have to evaluate that polynomial at various
points x = a. For example, suppose f(x) = anx

n + . . . + a1x + a0 is a polynomial
with integer coefficients, and you want to evaluate f(x) at the integer a. How many
multiplications does a naive answer to this question take?



ASSIGNMENT 3: SOLVING CONGRUENCES 3

Well, you will calculate ak for each k with 0 ≤ k ≤ n; if you compute ak using
k − 1 multiplications, then altogether it will take 1 + 2 + . . . + (n− 1) = n(n− 1)/2
multiplications to find the powers of a, followed by n multiplications to compute
the products aka

k. However, you might notice that you are doing lots of repeated
calculations with this method; maybe you just compute each of a, a2, . . . , ak once:
you start by calculating a0, then by adding a1 ·a to a0 (which takes 1 multiplication),
and then adding a2 ·a2 to this, which takes 2 multiplications (one to compute a2 from
a, and another to compute a2 · a2). You can repeat this procedure, and altogether
this takes 2n− 1 multiplications to evaluate f(a).

There is actually an even better method, known as Horner’s algorithm: notice that
we can write

f(a) = a0 + a1a + . . . + ana
n = a0 + a(a1 + a2a + a3a

2 + . . . + ana
n−1).

If you have already computed the polynomial in the parentheses (a1 + a2a + . . . +
ana

n−1), then it only takes one multiplication and one addition to compute f(a). But
notice that the polynomial in the parentheses is a degree n − 1 polynomial. So we
can apply this method to the n− 1 degree polynomial; in general we can reduce the
degree of the polynomial we have to evaluate in exchange for one addition and one
multiplication. Altogether, we will need a total of n multiplications to evaluate f(a).

A good exercise is to implement this algorithm on your computer. You don’t need
to turn this in, but it is a nice exercise. Try implementing a version which uses
recursion and another version which is iterative.

3. Useful information

3.1. Problems to hand in. In your file which contains the code you submit, make
sure that you can run the file in IDLE without error and that all functions are
loaded appropriately. In other words, if you open the .py file you submit and run it
in IDLE (using the Run Module command under the Run submenu), there should
be no error messages in the interactive interpreter, and you should be able to use
the functions you wrote. Also make sure that you spell the names of the required
functions correctly! (On the other hand, the names of the arguments passed into
the function can be arbitrary, as long as the function accepts the correct type and
number of arguments.) Finally, please put your name near the top of the file in a
comment (use the # symbol to write comments; Python will ignore everything on
that line which comes after the #).

• Turn in problems 1, 2, 3, 4, 5, and 6 in a single file named [lastname]4.py
(without brackets around your last name.)

3.2. Test cases. (This is simply a repeat of the information provided in the previous
assignment.) The Python standard library contains a handy module called doctest,
which provides a lightweight method for testing test cases. In the assignment page,
the template .py file will contain a lengthy docstring at the beginning of each function,
which contains the test cases we provide for each function (if there are any).

Also, at the end of the file, there will be a short snippet of code, which will only
run if you ask IDLE to execute the entire file with the ‘Run Module’ command.
The template we provide will include a ‘verbose=True’ switch, which will cause your

http://en.wikipedia.org/wiki/Horner_scheme
http://docs.python.org/library/doctest.html


4 ASSIGNMENT 3: SOLVING CONGRUENCES

program to output extensive information on the results of each test case. If you would
like to suppress the output, and only be informed if cases fail, remove ‘verbose=True’
from within the parentheses of the doctest.testmod function.

For questions that use floating point numbers, we only test whether your answer
is within some degree of accuracy. It is conceivable for your function to fail those
testcases even if it is correct because of the way floating point arithmetic is handled
on the machine being used.

Usage of the test cases is optional. If you want, you can delete the docstrings,
delete the code at the end which calls doctest.testmod, or just not use the template
file provided. However, we strongly recommend you test your functions against some
test cases to ensure that your code is at least somewhat functional.


	1. Linear congruences
	2. Polynomial congruences
	3. Useful information
	3.1. Problems to hand in
	3.2. Test cases


