WRITTEN HW \#1, DUE OCT 32011

Remember to write clearly and to justify all your claims in your solutions.
(1) (10pts) Use induction to prove that

$$
\sum_{k=1}^{n}(2 k-1)=n^{2}
$$

(It is possible to prove the above formula without using induction, but for the purposes of this exercise use induction.)
(2) (10pts) The first two terms of the Fibonacci sequence are $F_{1}=F_{2}=1$, and all succeeding terms are defined by the recurrence relation

$$
F_{n+2}=F_{n+1}+F_{n}, n \geq 1 .
$$

A natural question to ask is whether there is an explicit formula for the general term of the Fibonacci sequence.

Consider the polynomial $x^{2}-x-1$. One easily checks that this has roots

$$
\rho=\frac{1+\sqrt{5}}{2}, 1-\rho=\frac{1-\sqrt{5}}{2}
$$

Show that

$$
F_{n}=\frac{\rho^{n}-(1-\rho)^{n}}{\sqrt{5}}
$$

(Incidentally, note that $\rho \approx 1.618$ is the golden ratio, a number which appears frequently in classical architechture.)
(3) (10pts) The first few rows of Pascal's triangle are

				1		
		1		1		
	1		2		1	
1		3		3		1
			\vdots			

For reasons of notational convenience, we call the top row 'row 0', the next row 'row 1 ', etc. Each entry in a row is generated by summing the values of the two entries directly to the upper left and upper right of it. For example, the first 3 in the 3rd row is obtained by adding the two numbers immediately above it, which are 1 and 2 . The first and last entries of each row are always 1.

Let n, k be integers satisfying $0 \leq k \leq n$. The binomial coefficient $\binom{n}{k}$, sometimes called n choose k, is defined by the equation

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!},
$$

where n ! $=n(n-1)(n-2) \ldots(2)(1)$, called n factorial, is the product of the first n positive integers.

Show that the k th term of the nth row of Pascal's triangle is $\binom{n}{k}$. (Like the numbering of the rows themselves, we start the numbering of the elements in each row with 0 , not 1.)
(4) (5pts) Use the Euclidean algorithm to compute $\operatorname{gcd}(a, b)$ for the following pairs a, b. Make sure to show each Euclidean division you perform.
(a) $a=255, b=68$.
(b) $a=349, b=17$.
(c) $a=196, b=28$.
(5) (5pts) Use the Euclidean algorithm to find a pair of integer solutions (x, y) to

$$
31 x-12 y=1
$$

(6) (10pts) Show that the product of any k consecutive positive integers is always divisible by $k!$.

