WRITTEN HW \#2, DUE ...

(1) (10 points) Suppose that we perform the Euclidean algorithm on a pair of positive integers a, b, where $a>b$, and obtain a sequence of remainders $r_{0}=$ $b, r_{1}, r_{2}, \ldots, r_{n}=0$. Show that $r_{i+2}<r_{i} / 2$ for all $0 \leq i \leq n-2$.
(2) (10 points) Suppose that we perform the Euclidean algorithm on a pair of positive integers a, b, where $a>b$. Show that the algorithm terminates after at most $\left\lfloor 2 \log _{2} a+3\right\rfloor$ Euclidean divisions. Hint: Use the previous problem! ($\lfloor x\rfloor$ means the largest integer less than or equal to x, and is the same thing as rounding a real number down.)
(3) (5 points each)
(a) Find all integer solutions (x, y) to $77 x+98 y=7$.
(b) Find all integer solutions (x, y) to $6 x+21 y=9$.
(4) (10 points) The residents of a parallel universe play a simplified version of (American) football where teams can only score on touchdowns and field goals, which are worth 7 and 3 points respectively. What is the largest number of points which cannot be achieved by any combination of scores? (Remember to prove your answer!)
(5) (10 points) Let $a, b>0$ be two positive integers. Consider the line segment connecting $(0,0)$ to (a, b). A lattice point is a point (x, y) where both x, y are integers. Show that this line segment passes through exactly $\operatorname{gcd}(a, b)+1$ lattice points. (We count both $(0,0)$ and (a, b) as lying on the segment.)

