WRITTEN HW \#3, DUE OCT 172011

Remember to write clearly and to justify all your claims in your solutions. Please staple your assignment before turning it in.
(1) (10 points) Suppose that $\operatorname{gcd}(q, a)=1$. Dirichlet's Theorem (which we stated but never proved) says that there are infinitely many primes of the form $q k+a$, where $k \in \mathbb{Z}$. On the other hand, show that there are infinitely many values of k such that $q k+a>0$ and $q k+a$ is composite.
(2) (10 points) Recall that we defined the binomial coefficient n choose m to equal

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!},
$$

and that in the first homework assignment we saw this was equal to an integer. Let p be a prime, and let $0<i<p$. Show that the power of p appearing in the factorization of $\binom{p}{i}$ is 1 ; ie, show that $p \|\binom{ p}{i}$.
(3) (10 points) Let p be a prime, and let n be a positive integer. Find an expression for the power of p in the factorization of $\operatorname{lcm}(1,2,3, \ldots, n)$, and prove that your answer is correct.
(4) (10 points) Let $a, b>1$ be two integers which do not have all the same prime factors. (For instance, $a=6, b=24$ would not satisfy this property, since their prime factors are the same; namely, 2,3 , whereas $a=10, b=8$ would, since $5 \mid a, 5 \nmid b$.) Show that $\log _{a} b$ is an irrational number.
(5) (10 points) Show that there are infinitely many prime numbers in the form $8 k+5$ or $8 k+7$.

