WRITTEN HW #4, DUE OCT 24 2011

Remember to write clearly and to justify all your claims in your solutions. Please staple your assignment before turning it in.

- (1) (10 points) For each of the following numbers, compute the ones digit of that number in its decimal expansion. Your answer should not require any electronic computational tools.
 - (a) (2 points) 7^{2375}_{15}
 - (b) (3 points) $\sum_{n=1}^{15} n!$
 - (c) (5 points) $3 \stackrel{n=1}{\uparrow\uparrow} n$, for $n \ge 3$, where $a \uparrow\uparrow n$ means a power tower of a with size n: for instance, $2 \uparrow\uparrow 3 = 2^{2^2} = 2^4$, while $2 \uparrow\uparrow 4 = 2^{2^{2^2}} = 2^{2^4} = 2^{16}$. (Remember that towers of exponentials are evaluated from the top down, not the bottom up, so for instance $3^{3^3} = 3^{27}$, not $(3^3)^3 = 27^3$, which is a much smaller number than 3^{27} .) Your answer should be in terms of n.
- (2) (10 points) Find all solutions (modulo the appropriate modulus) to the following linear congruences. Explain why your answer is correct.
 - (a) $2x \equiv 7 \mod 5$
 - (b) $5x \equiv 3 \mod 15$
 - (c) $x^2 + 1 \equiv 0 \mod 13$
 - (d) $x^2 + 1 \equiv 0 \mod 19$
 - (e) $244x \equiv 32 \mod 75$
- (3) (20 points) Let X be a set. A relation on X is a subset R of $X \times X = \{(x, y) | x, y \in X\}$. We will write aRb if $(a, b) \in R$. For example, if $X = \mathbb{Z}$, then the subset R consisting of all ordered pairs $(x, 2x), x \in \mathbb{Z}$, is a relation on \mathbb{Z} , and we have 1R2, 4R8, say.

A relation R is called an *equivalence relation* if aRa for all $a \in X$ (ie, if R is *reflexive*), if aRb implies bRa (ie, if R is *symmetric*), and if aRb, bRc implies aRc (ie, R is *transitive*). The example relation defined in the last paragraph is not an equivalence relation – it violates each of the three properties an equivalence relation needs to satisfy. On the other hand, recall that the relation R on \mathbb{Z} defined by aRb if and only if $a \equiv b \mod n$, for some fixed integer n, is an equivalence relation.

A partition of a set X is a collection of subsets $\{X_i\}$ of X, such that each element of X is in exactly one subset X_i . For example, if $X = \{1, 2, 3\}$, then $X_1 = \{1, 3\}, X_2 = \{2\}$ is a partition of X, whereas $X_1 = \{1, 2\}, X_2 = \{2, 3\}$ is not, nor is $X_1 = \{1\}, X_2 = \{3\}$.

Let R be an equivalence relation. The equivalence class of an element $x \in X$ is defined to be the set of all $y \in X$ such that xRy, and is written [x]. Show that every element of X is in some equivalence class, and that if [x], [y] have non-empty intersection, then [x] = [y]. In particular, conclude that the equivalence classes of R partition X. Conversely, show that a partition $\{X_i\}$ of X induces an equivalence relation on X, where aRb if and only if a, b lie in the same subset X_i .

(4) (10 points) Recall that we said addition and multiplication of congruences classes was well-defined mod n, since we proved that if $a \equiv a' \mod n, b \equiv b' \mod n$, then $a + b \equiv a' + b' \mod n$, $ab \equiv a'b' \mod n$. Show that exponentiation of congruences classes is not well-defined in general, by exhibiting specific a, a', b, b', n such that $a \equiv a' \mod n, b \equiv b' \mod n$, but $a^b \not\equiv a'^{b'} \mod n$.