WRITTEN HW #7, DUE NOV 16 2011

Remember to write clearly and to justify all your claims in your solutions. Please staple your assignment before turning it in.

- (1) (10 points) Find all solutions to $x^2 + 3x + 3 \equiv 0 \mod 7^3$. All calculations should be done by hand.
- (2) (10 points) Show that $x^3 \equiv 9 \mod 11^n$ always has a solution if $n \ge 1$.
- (3) (10 points) Suppose G is a cyclic group of order n with generator g. Recall that the order of every element in G divides n. Suppose $d \mid n, d \geq 1$. How many elements of G have order d? What are they, in terms of g?
- (4) (10 points) Suppose $g_1 \in G_1$ has order n_1 and $g_2 \in G_2$ has order n_2 . What is the order of $(g_1, g_2) \in G_1 \times G_2$, in terms of n_1, n_2 ?
- (5) (10 points) Show that each of the following groups is isomorphic to $\mathbb{Z}/n\mathbb{Z}$:
 - The *n*th roots of unity; ie, the complex roots of $x^n = 1$, under multiplication.
 - The rotational symmetries of the regular n-gon, under composition.