WRITTEN HW #8, DUE DEC 5 2011

Remember to write clearly and to justify all your claims in your solutions. Please staple your assignment before turning it in.

- (1) (10 points) An *automorphism* of a group G is an isomorphism of G into itself. For example, the identity function on G is an automorphism. How many automorphisms does a cyclic group of order n have?
- (2) (10 points) Show that 8 is a primitive root mod 557, but 16 is not. You may use a calculator/computer to compute powers mod n (you can use your own program!), but you should explain why you are calculating the powers you calculate and how they show what you want to show.
- (3) (10 points) p = 191 is a prime. How many elements of U_{191} are
 - (a) squares?
 - (b) cubes?
 - (c) fifth powers?
 - (d) seventh powers?
- (4) (10 points) U_{36} is not cyclic, so U_{36} is not generated by any single element of U_{36} . However, find two elements which generate U_{36} (ie, two elements such that every element of U_{36} can be written as a product of powers of those two elements.)