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1. Congruences: introduction

Number theory asks questions about integers, such as when certain equations have
solutions in integers. When studying these sorts of problems, it sometimes helps to
replace all integers in a question with the remainders when divided by some fixed pos-
itive integer n. This leads to the study of modular arithmetic and the set Z/nZ, called
the ‘integers mod n’, and the arithmetic operations of addition and multiplication
which is defined on this set.

Let n be a fixed positive integer n. Let a, b be two integers. We say that a is
congruent to b mod n if n|(a − b), and sometimes write this as a ≡ b mod n. One
checks that congruence mod n satisfies the following properties:

Proposition 1. Let a, b, c be integers. Then

• a ≡ a mod n, for all a. (Reflexive property)
• If a ≡ b mod n, then b ≡ a mod n. (Symmetry property)
• If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n. (Transitive property)

Proof. Reflexivity is obvious, since a − a = 0, and n|0. For symmetry, if n|(a − b),
then n|(b− a), since b− a = −(a− b). Finally, for the transitive property, if n|(a− b)
and n|(b − c), then (a − b) = nq, (b − c) = nq′, for some integers q, q′, and then
a − c = (a − b) − (b − c) = n(q − q′). Since q − q′ is an integer, this means that
n|(a− c), or a ≡ c mod n, as desired. �

Why do we care that these properties are satisfied? These three properties means
that congruence mod n is what is known as an equivalence relation. If we look at
an integer a, we can ask for the set of all integers which are congruent to a mod n.
This set is called the congruence class or equivalence class of a mod n, and is written
[a] or sometimes a. The number n is called the modulus. If we want to explicitly
remind ourselves of the modulus n, we may write [a]n. Alternative notations for the
congruence class of a mod n also include a mod n or a(n). Concretely,

[a] = {a + qn|q ∈ Z} = {. . . , a− 2n, a− n, a, a + n, a + 2n, . . .}.
As a varies over integers, we get various congruence classes [a]. It is a general con-

sequence of the fact that congruence is an equivalence relation that these congruence
classes actually partition Z. A partition of a set S is a collection of subsets Si of
S whose union is equal to S and which are pairwise disjoint (that is, any pair has
empty intersection). Let’s take the time to look at some examples.
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Examples.

• Let n = 1. Then there is only one congruence class mod 1, since given any
two integers a, b, 1|(a− b) always. So [0] = [1] = [2] = [−4] = Z.
• Let n = 2. There are two congruence classes mod 2, given by even and odd

integers. Indeed, a ≡ b mod 2 if and only if 2|(a− b) if and only if a, b have
the same parity (ie, are either both odd or both even). So [1] = [3] = [5] =
[−27], [2] = [6] = [102] = [0].
• Let n = 3. There are three congruence classes mod 3. These are given by

numbers of the form 3k, 3k + 1, and 3k + 2. For instance, [0] consists of
multiples of 3, while [1] = {. . . ,−5,−2, 1, 4, 7, . . .} consists of numbers of the
form 3k + 1, while [2] consists of numbers of the form 3k + 2.

These examples probably suggest that the number of congruence classes mod n
is n. This is indeed the case, as the following proposition shows:

Proposition 2. Let n be a fixed integer. Then a ≡ b mod n if and only if a, b have
the same remainder after division by n. In particular, [0]n, [1]n, . . . , [n − 1]n are all
the congruence classes of integers mod n.

Proof. If a ≡ b mod n, then n|(a − b). Suppose a, b have remainders r, r′ and quo-
tients q, q′ after division by n. Then a = qn+r, b = q′n+r′, so a−b = (q−q′)n+(r−r′).
If n|(a − b), then n|(r − r′), but since 0 ≤ r, r′ < n, this is only possible if r = r′.
Conversely, if r = r′, then a− b = (q − q′)n, and clearly n|(a− b).

We now check that [0]n, [1]n, . . . , [n− 1]n are all the congruence classes of integers
mod n. First, notice they are all different, since [a] = [b] implies n|(a − b), which is
clearly impossible if a, b are distinct and chosen from 0, 1, . . . , n−1. These are all the
congruence classes, since given any [a], we have [a] = [r], where r is the remainder
upon division of a by n, and 0 ≤ r < n. �

This proposition tells us that the set of congruence classes mod n has exactly
n elements and can be written as [0], [1], . . . , [n − 1]. We call this set the integers
mod n, and sometimes write this as Z/nZ, or sometimes Zn. We now want to show
that we can add and multiply these congruence classes in the natural way.

Proposition 3. Suppose that a ≡ a′ mod n, b ≡ b′ mod n. Then a + b ≡ a′ + b′

mod n and ab ≡ a′b′ mod n.

Proof. If a ≡ a′ mod n, then a = a′ + q1n for some q1, and similarly b = b′ + q2n for
some q2. Therefore a + b = a′ + b′ + (q1 + q2)n, which means a + b ≡ a′ + b′ mod n.
One can do something similar for multiplication; this is left as an exercise. �

The key point of this proposition is that it allows us to define addition and mul-
tiplication of residue classes in the natural way, and this definition makes sense. So
we define addition of congruence classes mod n using the formula [a] + [b] = [a+ b],
and multiplication via [a][b] = [ab]. We always add or multiply congruence classes to
the same modulus n. We can also define subtraction as [a]− [b] = [a− b], but we will
need to wait a little while before defining division, because we need to worry about
not ‘dividing by 0’. We’ll come back to this later.

The reason the previous proposition is necessary when defining addition or multi-
plication of equivalence classes this way is because the definition refers to the specific
member a of the congruence class [a], and we need to make sure that the definition
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is consistent regardless of which element of [a] we choose to represent it. For in-
stance, if we are looking at classes mod 4, we know that [1] + [2] = [3]. Because
[1] = [9], [2] = [6], say, we would also like [9] + [6] = [15] = [3], which is what the
proposition above guarantees.

That this actually is an issue is made clear by the operation of exponentiation.
For instance, consider the integers mod 3. We have 4 ≡ 1 mod 3, but notice that
[2]4 = [16] = [1], while [2]1 = [2]. So we cannot define exponentiation of congruence
classes, because this definition would not be well-defined.

A useful definition for the future is that of a complete set of residues mod n.
A residue or representative of a congruence class is just a particular element of a
congruence class. A complete set of residues mod n is a choice of residues (that is,
integers) such that there is one residue from each of the n congruence classes mod n.

For instance, the complete set of residues consisting of least non-negative residues
mod n is given by 0, 1, 2, . . . , n− 1. This set will frequently appear in computations
mod n, since these numbers are small and non-negative. Another set which will
sometimes be of use is the complete set of least absolute residues, which consist of the
residues from each congruence class which are smallest in absolute value. If n is odd,
this set consists of 0,±1, . . . ,±(n−1)/2, and if n is even, 0,±1, . . . ,±(n−2)/n, n/2.

Examples.

• Find the remainder after division of 316 by 11. Calculating 316 by hand is
really annoying, but calculating the least residue in the congruence class of
316 mod 11 is not nearly as hard. We successively square 3, always taking
the remainder mod 11 each time. For instance, 32 ≡ 9 mod 11, 34 ≡ 92 ≡ 4
mod 11, 38 ≡ 42 ≡ 5 mod 11, 316 ≡ 52 ≡ 3 mod 11. So the remainder after
division of 316 by 11 is 3. We could have also seen this by noticing that 34 ≡ 4
mod 11 implies that 35 ≡ 12 ≡ 1 mod 11, so that 315 ≡ 1 mod 11, and then
316 ≡ 3 mod 11.
• Show that the grade-school divisibility test by 3 and 9 is correct. (The test

tells you that a number is divisible by 3 or 9 if and only if the sum of the
digits is divisible by 3 or 9.) Suppose we are testing a number n, which
has decimal digits akak−1 . . . a1a0. This notation is really shorthand for the
number a0 + 101a1 + . . . + 10kak. This number is divisible by 3 if and only if
it is ≡ 0 mod 3. On the other hand, because 10 ≡ 1 mod 3, so that 10i ≡ 1
mod 3, we have

a0 + 101a1 + . . . + 10kak ≡ a0 + a1 + . . . + ak mod 3.

Therefore, the original number is divisible by 3 if and only if the sum of its
digits is divisible by 3, as desired. The exact same argument works with 3
replaced by 9, because 10 ≡ 1 mod 9 as well.
• Show that a number is divisible by 11 if and only if the alternating sum of

its digits (where you alternate between adding and subtracting digits of the
number) is divisible by 11. For instance, 1375 is divisible by 11 because the
alternating sum of its digits is 1− 3 + 7− 5 = 0, which is divisible by 11.
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This time we use the fact that 10 ≡ −1 mod 11. Therefore, 10i ≡ 1
mod 11 if i is even, and 10i ≡ −1 mod 11 if i is odd. Consider the number
with decimal digits akak−1 . . . a1a0. Then

a0 + 101a1 + . . . + 10kak ≡ a0 − a1 + a2 − . . . + (−10)kak mod 11,

as desired.
• Show that the equation x2 − y2 = 74 has no solutions in integers. If this

equation had a solutions in integers, it would also have solutions mod n
for any integer n. Consider this equation mod 4. Because 74 ≡ 2 mod 4,
this equation becomes x2 − y2 ≡ 2 mod 4. However, x2 ≡ 0, 1 mod 4, as
a case-by-case analysis shows, so x2 − y2 ≡ 2 mod 4 is impossible, since
x2 − y2 ≡ −1, 0, 1 mod 4.

This last example illustrates a useful technique in number theory: it is possible
to rule out the existence of integer solutions to polynomial equations sometimes by
considering those equations mod n for suitably chosen n. This has the advantage
of reducing a problem in which there are infinitely many cases to check to one in
which there are only a finite number of cases. Of course, there is the problem that
sometimes it is not possible to rule out integer solutions to polynomial equations in
this way.
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