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1. More on congruences

It is often useful to know that a single congruence mod n can be split up into
several congruences mod prime powers, and vice versa, multiple congruences mod
various relatively prime numbers can be assembled into one congruence. This is the
content of the following proposition:

Proposition 1 (Theorem 3.4 of the text). Let n = pe11 . . . pekk be the factorization of
an integer n. Then a ≡ b mod n if and only if a ≡ b mod peii for every i. More
generally, if n = n1n2, where n1, n2 are relatively prime, then a ≡ b mod n if and
only if a ≡ b mod ni for i = 1, 2.

Proof. We have basically already proved this proposition, in a slightly different lan-
guage. a ≡ b mod n is true if and only if n|(b− a), and true if and only if peii |(b− a)
for every i. We are using the fact that the peii are relatively prime in a critical way
when we go from peii |(b−a) for all i to n|(b−a); this is the content of Corollary 1.11a
of the text. The proof of the generalization is identical. �

Another fact which is obvious from what we have already proven is the following:

Lemma 1 (Lemma 3.5 of the text). Let f(x) be a polynomial with integer coefficients.
If a ≡ b mod n, then f(a) ≡ f(b) mod n.

Proof. If f(x) = anx
n + . . .+ a0, then f(a) = ana

n + . . .+ a0 ≡ anb
n + . . .+ a0 = f(b)

mod n, because addition and multiplication are preserved mod n. �

The reason these two results are interesting is because we will think about trying
to solve f(x) ≡ 0 mod n, where f(x) is some polynomial with integer coefficients.
The first proposition allows us to reduce this to the problem of understanding the
solutions to f(x) ≡ 0 mod pe, for various prime powers pe.

An interesting application of the previous lemma is a nice proof that no single-
variable polynomial only takes on prime values:

Proposition 2 (Theorem 3.6 of the text). Let f(x) be a polynomial with integer
coefficients which is non-constant. Then there is some integer x for which f(x) is
not prime.

Proof. Suppose f(x) were prime for every integer x. Select some integer, say a. Then
f(a) = p. Now take any other b ≡ a mod p, where b 6= a. Then f(b) ≡ f(a) ≡ 0
mod p. Since p|f(b), and f(b) is prime, then p = f(b). This is true for every
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b ≡ a mod p, so the polynomial f(x)− p = 0 has infinitely many roots. However, a
polynomial with infinitely many roots must be the zero polynomial, so f(x) = p is a
constant polynomial. �

By way of general knowledge: we know that for linear polynomials ax + b, where
gcd(a, b) = 1, there are infinitely many prime values of this polynomial, and also
some non-prime values. Whether the same is true for even a quadratic polynomial is
still an open question; for instance, it is unknown whether x2 + 1 takes on infinitely
many prime values. Interestingly enough, there are explicit examples of multivariable
polynomial which, when they take positive values, are always prime (and every prime
is in the range of such a polynomial). The reason these polynomials do not work as
practical prime generators is because it is hard to determine what values the variables
should take to force the value of the polynomial to be positive and large.

2. Linear equations mod n

We will now systematically study the equation ax ≡ b mod n, to determine
whether this equation has solutions mod n, and if so, how many there are and how
to find all of them. Of course, equations mod n are finite problems, so we could
simply solve this equation using brute force, by plugging in each of the n possible
values of x mod n. However, this approach is not wholly satisfactory, since we want
to not only know how to solve this equation, but how to determine properties of this
equation without actually solving anything using brute force.

Fortunately, we’ve already done most of the work in understanding these equations,
just in a slightly different language. The proof of the following proposition, which
says a lot of what there is to be said, demonstrates what I mean.

Proposition 3 (Theorem 3.7 of the text). Consider the congruence ax ≡ b mod n.
Let d = gcd(a, n). Then this equation has a solution if and only if d divides b. If so,
then there are d solutions mod n. If x0 mod n is one of those solutions, then the

remaining are given by x0 +
nt

d
mod n, where t ranges over the integers.

Proof. The key idea is to recognize that ax ≡ b mod n is a statement about a linear
equation in two variables. In particular, ax ≡ b mod n if and only if n|(ax − b),
which is true if and only if there is an integer y such that ny = ax−b, or ax+ny = b.
This is an equation which we know how to solve: it has solutions if and only if
gcd(a, n) = d|b, which was the first part of the proposition, and if there are solutions,
the x-coordinates are given by the equation x = x0 + nt/d, with t ∈ Z.

To really conclude the proof, we should check that x0 + nt/d mod n yields d
congruence classes mod n. This is more or less clear, because nt/d takes on distinct
congruence classes mod n when t = 0, 1, . . . , d− 1, and then x0 +nd/d = x0 +n ≡ x0

mod n, so that the congruence classes repeat when t = d. �

An alternate way of expressing the last claim of the proposition is that the solutions
to ax ≡ b mod n not only form d congruence classes mod n, but a single congruence
class mod n/d, with x ≡ x0 mod n/d. As we will see in the near future, this point
of view sometimes has its advantages.

Examples.
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• Find all solutions to 6x ≡ 4 mod 10. Since gcd(6, 10) = 2, and 2|4, this
equation has solutions, and has two solutions mod 10, or one solution mod
5. In this example, we simply find the solutions by brute force. A bit of
observations hows that x = 4, 9 both solve this equation, so the solutions are
given by x ≡ 4, 9 mod 10, or x ≡ 4 mod 5. Notice that x ≡ 9 mod 5 also
works.
• Find all solutions to 5x ≡ 7 mod 13. Since gcd(5, 13) = 1, and 1|7, this

means there is exactly one solution to this equation mod 13. Again, brute
force shows that x ≡ 4 mod 13 is a solution, and therefore the only solution.
• Find all solutions to 94x ≡ 1 mod 273. We used this example a few weeks

ago when discussing the Euclidean algorithm and found that gcd(94, 273) = 1.
Therefore, there is exactly one solution to this equation mod 273. How do we
go about finding this solution? Instead of using brute force, remember that
the Euclidean algorithm tells us that 1 = 273(−21) + 94(61). Another way of
writing this is 94(61) ≡ 1 mod 273, so x ≡ 61 mod 273 is the only solution
mod 273 to the above equation. This is much better than the original naive
approach we discussed, where we use brute force to try all 273 possible values
of x!
• Find all solutions to ax ≡ 1 mod n, where a is any integer. This is a routine

application of the above proposition; if gcd(a, n) = 1, then there is exactly
one solution mod n, and if not, then there are no solutions. To actually
find a solution if gcd(a, n) = 1, one can use the Euclidean algorithm to solve
ax + by = 1, and then take the x-coordinate of whatever solution you find.

One nice interpretation of the last example is that it makes sense of when we are
allowed to ‘divide by a’ in a congruence equation. For instance, suppose we have
an equation like a ≡ b mod n. If we try to naively ‘divide by a’, we end up with
something which looks like 1 ≡ b/a mod n. As written, this makes no sense, since
in general b/a is not an integer. However, if ax ≡ 1 mod n has a solution, which we
might call a−1, then multiplying a ≡ b mod n by a−1 yields aa−1 ≡ ba−1 mod n,
or 1 ≡ ba−1 mod n. As ba−1 is still an integer, this makes sense, and has the same
effect on the left hand side as naively trying to ‘divide by a’ does. If this a−1 mod n
exists (ie, if gcd(a, n) = 1), we sometimes call a−1 the multiplicative inverse of a
mod n.

Example. Suppose we already figured out that 7x ≡ 1 mod 13 has solution x ≡ 2
mod 13. We can use this information to find all the solutions to 7x ≡ a mod 13; mul-
tiply both sides by 2 to get 14x ≡ 2a mod 13, or x ≡ 2a mod 13. So if gcd(a, n) = 1,
we can multiply by the multiplicative inverse of a to eliminate the coefficient a from
ax, much like what we would do if we were simply solving a linear equation over
rationals or real numbers.

The book gives a different algorithm for solving ax ≡ b mod n. I’m not as big a
fan of it, since the Euclidean algorithm does the job nicely, but the book’s method
does use the following proposition which can be helpful for simplifying the process of
finding a solution to ax ≡ b mod n.
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Proposition 4 (Lemma 3.9 of the text). . Consider the equation ax ≡ b mod n.
(a) If m|a, b, n, and a′ = a/m, b′ = b/m, n′ = n/m, then ax ≡ b mod n if and only
if a′x ≡ b′ mod n′. (b) If gcd(a, n) = 1, and m|a, b, and a′ = a/m, b′ = b/m, then
ax ≡ b mod n if and only if a′x ≡ b′ mod n.

Proof. (a) ax ≡ b mod n if and only if n|(ax − b) if and only if ny = (ax − b) for

some integer y. Since m|a, b, n, this is true if and only if
n

m
y =

a

m
x − b

m
, which is

true if and only if n′y = a′x− b′. This in turn is true if and only if a′x ≡ b′ mod n′.
(b) This time, ax ≡ b mod n if and only if ny = ax − b. Divide both sides by

m; we have ny/m = a′x − b′. Since the right hand side is an integer, ny/m is an
integer. Since m|a and gcd(a, n) = 1, we must have gcd(m,n) = 1, so y/m is an
integer. This means n|(a′x− b′), or a′x ≡ b′ mod n. Conversely, if a′x ≡ b′ mod n,
then ny = a′x − b′ for some integer y, and multiplying by m gives n(my) = ax − b,
or ax ≡ b mod n. �

If you use this proposition, be very careful to make sure that the hypotheses are
met and that you are using the correct proposition.

Example. Solve 24x ≡ 12 mod 66. Since 24, 12, 66 are all divisible by 6, this is
equivalent to 4x ≡ 2 mod 11. We can solve this by brute force, to get x ≡ 6 mod 11
as the only solution. If we wanted to, we could describe the solutions to the original
equation mod 66; these would be x ≡ 6, 6 + 11, 6 + 22, 6 + 33, 6 + 44, 6 + 55 mod 66.

What you are not allowed to do is convert 24x ≡ 12 mod 66 to 4x ≡ 3 mod 66.
Even though the latter equation makes sense, since all numbers are still integers, it
has fewer solutions than the original congruence, since gcd(4, 66) = 2, which is not
the same as gcd(24, 66) = 6. So be very mindful when you are actually dividing by
integers to convert a congruence to something which is more easily solved.

In summary, you have a lot of ways to find solutions to ax ≡ b mod n. You can do
a brute force search, testing all n possibilities for x, although this might be painful
if n is fairly large. If you compute gcd(a, n), say using the Euclidean algorithm or
any other method, then you only need to find one solution to ax ≡ b mod n before
knowing what all the solutions look like. If you used the Euclidean algorithm to solve
ax + ny = b, then you immediately can read off a solution to ax ≡ b mod n from
this. If a, b, n all have a common divisor, you can also divide through by a common
divisor to reduce ax ≡ b mod n to another linear congruence where all numbers
involved are smaller, so that it becomes easier to find a solution.
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