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1. Polynomial congruences

We now have a good understanding of how to solve systems of linear congruences
to different moduli, regardless of whether they are mutually coprime or not. In the
case of mutually coprime moduli, the CRT provides the answer for how solutions
of simultaneous systems are assembled from solutions to the individual congruences.
In the case of moduli which are powers of the same prime, we have a compatibility
requirement which must be satisfied for there to be a simultaneous solution.

We will now briefly consider the case of what happens when we have congruence
equations which are polynomial of degree higher than one. In general, this is a difficult
problem, but we will be able to make a few elementary observations.

Let f(x) be a polynomial with integer coefficients. We want to solve f(x) ≡ 0
mod n. Of course, given a particular f(x), one can solve this problem by trying
each of the n possibilities for x. However, there is no easy criterion like that which
exists for linear congruences to easily test whether such a polynomial congruence has
solutions or not (and if so, how many there are, and how to easily describe them).

However, the first observation is that there are always finitely many solutions
(at most n), and therefore the single equation f(x) ≡ 0 mod n is equivalent to
determining whether one in a set of linear congruences is true.

Examples.

• Consider the congruence x2 ≡ 1 mod 7. This has the two solutions x ≡ 1, 6
mod 7. Therefore, the original congruence is equivalent to asking whether
either x ≡ 1 mod 7 or x ≡ 6 mod 7 is true.
• Simultaneously solve the pair of congruences x2 ≡ 1 mod 5, x ≡ 2 mod 4.

Although the first congruence is not linear, we can reduce it to asking whether
a set of linear congruences is true. In particular, x2 ≡ 1 mod 5 if and only if
x ≡ 1, 4 mod 5. Therefore, we want to determine when either x ≡ 1 mod 5
or x ≡ 4 mod 5, and also when x ≡ 2 mod 4.

This breaks down the original problem into solving two different systems
of linear congruences. The system x ≡ 1 mod 5, x ≡ 2 mod 4 is solved
by x ≡ 6 mod 20, while the system x ≡ 4 mod 5, x ≡ 2 mod 4 is solved
by x ≡ 14 mod 20. Therefore, the original system has solutions x ≡ 6, 14
mod 20.
• More generally, if you are asked to simultaneously solve a system of congru-

ences, not necessarily linear, a general approach to this problem is to break
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down each congruence into the list of linear congruences it is equivalent to.
One then needs to solve many different systems of linear congruences, equal
to the product of the number of linear congruences in each list.

For instance, if we find that f(x) ≡ 0 mod n1 has N1 solutions mod n1,
while g(x) ≡ 0 mod n2 has N2 solutions mod n2, then we need to solve N1N2

different pairs of linear congruences.

A special case of the above is the following proposition:

Proposition 1 (Theorem 3.11). Let n1, . . . , nk be a mutually coprime set of positive
numbers. Let n = n1 . . . nk. If f(x) ≡ 0 mod ni has Ni solutions mod ni, then
f(x) ≡ 0 mod n has N1 . . . Nk solutions mod n.

Proof. If f(x) ≡ 0 mod n, then f(x) ≡ 0 mod ni for each i, since ni|n. In particular,
each solution x mod n induces a k-tuple of solutions x mod ni to the k congruences
f(x) ≡ 0 mod ni. Conversely, given a k-tuple of solutions a1, . . . ak to f(x) ≡ 0
mod ni, we can find a unique a mod n such that a ≡ ai mod ni, by the CRT. (We
are simultaneously solving the system x ≡ ai mod ni.) In particular, f(a) ≡ 0
mod ni; therefore, a mod n is a solution to f(x) ≡ 0 mod n. This means that each
k-tuple of solutions to f(x) ≡ 0 mod ni induces a solution to f(x) ≡ 0 mod n. One
easily sees that these two associations are inverse to each other, so there is a 1-1
correspondence between solutions to f(x) ≡ 0 mod n and simultaneous solutions to
f(x) ≡ 0 mod ni.

Since each f(x) ≡ 0 mod ni has Ni solutions, altogether there are N1 . . . Nk pos-
sible different k-tuples of solutions to these congruences, and therefore N1 . . . Nk

different solutions mod n to f(x) ≡ 0 mod n. �

An interesting application of this proposition is to the question of when x2 ≡ 1
mod n has exactly 2 solutions mod n. Recall that x2 ≡ 1 mod 8 has four solutions
mod 8, so it is possible for this equation to have more than two solutions. Contrast
this to the situation for the equation x2−1 = 0, when considered as an equation over
real or complex numbers, where there are exactly two solutions.

Proposition 2 (Example 3.18). Let n have k distinct prime divisors. If n is odd,
then x2 ≡ 1 mod n has 2k solutions. If 2|n, but 4 - n (equivalently, 2||n), then there
are 2k−1 solutions. If 4||n, then there are 2k solutions, and if 8|n, then there are 2k+1

solutions.

Proof. By the previous proposition, we can reduce this question to asking how many
solutions x2 ≡ 1 mod n has when n is a prime power. Let us first consider the case
where n is odd; ie, n = pe for p and odd prime. The equation x2 ≡ 1 mod pe is
equivalent to pe | (x2− 1) = (x− 1)(x+ 1). In particular, p | (x− 1)(x+ 1). But this
means that either p | (x− 1) or p | (x+ 1); ie, x ≡ 1,−1 mod p. As a matter of fact,
if pe | (x− 1)(x + 1), we must have pe | (x− 1) or pe | (x + 1), because if p | (x− 1),
then p - (x + 1) = (x − 1) + 2, since p > 2, and similarly if p | (x + 1). So the only
possible solutions to x2 ≡ 1 mod pe are x ≡ 1,−1 mod pe, and it is clear that these
are both distinct solutions.

Now consider what happens when n = 2e. If n = 2, then x2 ≡ 1 mod 2 obviously
only has the single solution x ≡ 1 mod 2. When n = 4, there are exactly two
solutions, x ≡ 1, 3 mod 4. We claim that when n = 2e > 4, there are exactly four
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solutions. First, notice that x ≡ ±1, 2e−1 ± 1 mod 2e are all solutions to x2 ≡ 1
mod 2e. That x ≡ ±1 mod 2e are solutions is obvious. For the other two, notice
that (2e−1 ± 1)2 = 22e−2 ± 2e + 1. As e ≥ 3, we have 2e − 2 ≥ e, so (2e−1 ± 1)2 ≡ 1
mod 2e. Finally, notice that these four solutions are all distinct, since e ≥ 3.

We now want to show that these four solutions are all the solutions to x2 ≡ 1
mod 2e. Since 2e | (x − 1)(x + 1), one of (x − 1), (x + 1), and the other, is even.
Since (x + 1) = (x − 1) + 2, and both (x − 1), (x + 1) ≡ 0 mod 2, we must have
(x − 1), (x + 1) ≡ 0, 2 mod 4. As a matter of fact, exactly one is equivalent to 0
mod 4, and the other is equivalent to 2 mod 4. For instance, suppose 2||(x + 1).
Then it must be the case that 2e−1|(x − 1), which implies that x ≡ 1 mod 2e−1,
so that x ≡ 1, 2e−1 + 1 mod 2e. If 2||(x − 1), we end up with the conclusion that
x ≡ −1, 2e−1 − 1 mod 2e instead. So the four solutions we listed are indeed all the
solutions to x2 ≡ 1 mod 2e, when e ≥ 3.

We can now put this all together. Using the previous proposition, x2 ≡ 1 mod n
has N1 . . . Nk solutions. If pi is odd, then Ni = 2, while if pi = 2, then Ni = 1, 2, 4,
depending on whether 2||n, 4||n, or 8|n. One quickly checks that the product of these
numbers is equal to the number in the statement of this proposition. �
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