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1. Polynomial congruences mod p

Let’s think about polynomial congruences mod p, where p is a prime. The previous
proposition, which considered x2 ≡ 1 mod n, showed that this equation can have
many more than 2 solutions, at least when n has multiple prime divisors. In contrast,
ax ≡ b mod n has at most one solution.

If we think about the number of solutions to f(x) = 0 when considered as an
equation over integers, real numbers, or complex numbers, a fundamental result is
that f(x) = 0 has at most d solutions, where d is the degree of f(x). As a matter of
fact, the fundamental theorem of algebra (first proved by Gauss...) says that f(x) = 0
has exactly d complex solutions, when those solutions are appropriately counted with
multiplicity.

So in general, f(x) ≡ 0 mod n violates what we expect to be true from thinking
about polynomials over real or complex numbers. Is there a situation where f(x) ≡ 0
mod n has at most d solutions? The answer is yes, as the following theorem shows:

Theorem 1 (Theorem 4.1). Let f(x) = adx
d + . . . + a0 be a polynomial with integer

coefficients, with ad 6= 0 and some ai 6≡ 0 mod p. Let p be a prime number. Then
f(x) ≡ 0 mod p has at most d solutions mod p.

Proof. We will prove this result using induction. When d = 0, 1, the result is clear;
for instance, when d = 0, then f(x) = a0, and p - a0, so a0 ≡ 0 mod p has no
solutions. When d = 1, the fact that a1x + a0 ≡ 0 mod p has at most one solution
mod p is a consequence of the fact that gcd(a1, p) = 1 if p - a1.

Let us assume that the result is true for polynomials of degree d − 1. Let f(x) =
adx

d + . . . + a0 be a polynomial of degree d we are trying to prove the result for.
Suppose that a mod p solves f(x) ≡ 0 mod p. Then f(a) = ada

d + . . . + a0 ≡ 0
mod p. Now consider the polynomial f(x)− f(a). This is equal to

f(x)− f(a) = ad(x
d − ad) + . . . + a1(x− a).

Notice that we can factor (x− a) from every term on the right hand side. This gives

f(x)− f(a) = (x− a)((ad(x
d−1 + xd−2a + . . . + ad−1) + . . . + a1).

The remaining term we get when we factor x− a out is very complicated, but it is a
polynomial of degree d− 1. Let us call it g(x). Then f(x)− f(a) = (x− a)g(x).
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How many solutions mod p does f(x) ≡ 0 mod p have? Since f(a) ≡ 0 mod p,
this has the same number of solutions as f(x)− f(a) = (x− a)g(x) ≡ 0 mod p has.
And this has a solution precisely when p|(x−a)g(x). Let’s count how many solutions
this has. We either have p|(x−a) or p|g(x). In the former case, x ≡ a mod p. In the
latter case, g(x) ≡ 0 mod p. We now use the inductive hypothesis on g(x), which is
a polynomial of degree d.

However, to be sure we can use the inductive hypothesis, we need to check that
there is a coefficient of g(x) not divisible by p. Suppose every coefficient of g(x) were
divisible by p. Then expanding out (x− a)(g(x)) = f(x)− f(a), we find that every
coefficient of f(x)− f(a), and hence f(x), is divisible by p, contradicting our original
assumption on f(x).

So the inductive hypothesis on g(x) tells us g(x) has at most d − 1 roots mod p.
Since f(x) ≡ 0 mod p if and only if x ≡ a mod p or g(x) ≡ 0 mod p, there are at
most d possible roots for f(x) ≡ 0 mod p, as desired. �

This is a really important theorem. It is the first hint that moduli which are prime
numbers preserve some of the familiar properties we know from real or complex
numbers. This theorem is also instrumental in proving some important later results
on Z/pZ.

Examples.

• The fact that p does not divide at least one coefficient of f(x) is clearly
necessary for this theorem to be true. If every coefficient of f(x) were divisible
by p, then f(x) ≡ 0 mod p regardless of the value of p, and then there would
be p roots mod p. This is analogous to the situation where the constant
polynomial f(x) = 0 has infinitely many roots over real or complex numbers.
• In contrast, the proposition does not require that the leading coefficient of
f(x) be not divisible by p. And if p|ad, then for all intents and purposes we
can replace f(x) with a lower-degree polynomial if we are interested only in
its values mod p. For instance, 3x2 + 1 ≡ 1 mod 3 for any value of x.
• The fact that the modulus is prime is essential. We already saw that x2 ≡ 1

mod n can have more than n solutions if n is not prime. Of course, there are
some situations where f(x) ≡ 0 mod n will have d or fewer solutions, even if
n is composite, but in general this will not happen.

2. Fermat’s Little Theorem

We now prove another important theorem. This is a favorite in high school math
competitions, but it also expresses a deep truth about numbers mod p.

Theorem 2 (Fermat’s Little Theorem, Theorem 4.3). Let p be a prime, and let p - a.
Then ap−1 ≡ 1 mod p.

Proof. The book gives two proofs, but one of them uses a little bit of group theory,
so we give the other. (If you know algebra, you should read the group theory proof.
And even if you don’t know algebra, you should know enough in a few weeks to go
back and read this proof.)

Consider the numbers 1, 2, . . . , p−1. These form what is known as a complete set of
(nonzero) residues mod p: that is, this list of p−1 numbers consists of numbers which

http://en.wikipedia.org/wiki/Fermat's_little_theorem
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represent each of the p− 1 nonzero congruence classes mod p exactly once. Another
way of saying this is that 1, 2, . . . , p−1 mod p are all the nonzero congruence classes
mod p.

Consider the list of numbers a, 2a, 3a, . . . , (p − 1)a. We claim that this is still a
complete set of nonzero residues mod p. To do this, it is enough to show that any
two numbers from this list are not congruent mod p, because then we have a list
of p − 1 integers which are all in distinct nonzero congruence classes mod p, and
there are only p− 1 of these, so that a, 2a, . . . , (p− 1)a mod p are all of the distinct
congruence classes mod p.

So consider ia, ja, where 1 ≤ i, j,≤ p − 1. Suppose ia ≡ ja mod p. Then
p | (ia−ja) = a(i−j). Since p - a, we must have p | (i−j). But since 1 ≤ i, j ≤ (p−1),
we must have i = j. Therefore the ia are all inequivalent mod p as we let i vary from
1 to p− 1.

One consequence of this is that 1 ·2 · . . . (p−1) ≡ (a) · (2a) · . . . · (p−1)a mod p, or,
in other words, (p − 1)! ≡ (p − 1)!ap−1 mod p. Indeed, notice that each product is
just the product of representatives from each of the p− 1 nonzero congruence classes
mod p. In particular, the right hand side is just a reordering of the terms on the left
hand side, if we think of two numbers which are congruent mod p as the same.

But we also know that gcd(p, (p − 1)!) = 1. So we can cancel (p − 1)! from both
sides of the above congruence to get ap−1 ≡ 1 mod p, as desired. �

Examples.

• Here is a concrete example of the main idea behind the proof of Fermat’s
Little Theorem. Suppose we wish to prove the statement true for a = 2, p = 5.
Then the list of numbers 1, 2, 3, 4 form a complete set of representatives of
nonzero congruence classes mod 5. Multiplying every number on this list by 2
gives 2, 4, 6, 8, and one checks these still are a complete set of representatives
of nonzero congruence classes mod 5, because 2, 4, 6, 8 ≡ 2, 4, 1, 3 mod 5,
respectively. If you want, you can work out what happens with a = 3, 4 as
well.
• A favorite type of calculation involving Fermat’s Little Theorem (now abbre-

viated FLT, not to be confused with Fermat’s Last Theorem) is something
of the following type: compute 273212363 mod 11 say. (In this problem, we
really mean to find the remainder of 273212363 when divided by 11.

First, notice 27 ≡ 5 mod 11, so we can replace the base 27 with 5. Since
11 - 5, we have 510 ≡ 1 mod 11. But this means that 510k ≡ 1 mod 11,
for any positive integer k. Since the exponent 3212363 can be written as
3212363 = 10(321236) + 3, this tells us that

53212363 = 510(321236)+3 = 510(321236) · 53 ≡ 1 · 53 ≡ 4 mod 11.

• A corollary (corollary 4.4) is that ap ≡ a mod p, regardless of the value of
the integer a. Indeed, if p - a, just multiply both sides of the statement of
FLT by a, and if p|a, then a ≡ 0 mod p, and the statement is obviously true.
Notice that we can only go from ap ≡ a mod p, which is true for all a, to
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ap−1 ≡ 1 mod p, if a has a multiplicative inverse mod p; ie, if gcd(a, p) = 1,
which is the same as saying p - a.

Using many of the same ideas as in the proof of Fermat’s Little Theorem, we can
prove the following interesting theorem:

Theorem 3 (Wilson’s Theorem, Corollary 4.5). Let n > 1 be a positive integer.
Then (n− 1)! ≡ −1 mod n if and only if n is a prime.

Proof. Suppose n is not prime; say n = ab, for 1 < a, b. Then a appears in (n− 1)!,
so a|(n−1)!. Since (n−1)! ≡ 0 mod a, this implies that (n−1)! ≡ b, 2b, . . . , (a−1)b
mod n. Since n > 1 and b > 1, it is impossible for any of these numbers to be
congruent to −1 mod n.

Now suppose n = p is prime. Consider the set of numbers 1, 2, . . . , p− 1. Let a be
some number from this set not equal to 1 or p−1. We claim that there is exactly one
other number b in this set such that ab ≡ 1 mod p, and also that b 6= a. Indeed, since
gcd(a, p) = 1, we already know that a has a multiplicative inverse a−1 mod p. So
we take b to be the number on this list which belongs to the congruence class of a−1

mod p, and this b is unique since 1, 2, . . . , p − 1 represents each nonzero congruence
class exactly once. If a = b, then a2 ≡ 1 mod p, or a ≡ ±1 mod p, which says that
a = 1, p− 1, contradicting our original assumption on a.

In this way, we can pair off each of the p− 3 numbers 2, 3, . . . , p− 2 in such a way
so that the product of the numbers in each pair is 1 mod p. In particular, this tells
us that (p− 1)! ≡ 1(p− 1) ≡ −1 mod p. �

Wilson’s Theorem provides an alternate characterization of prime numbers, so
perhaps one might think that Wilson’s Theorem could be used as a primality test.
Given an integer n, we compute (n−1)!, and then check if it is ≡ −1 mod n. Indeed,
this works, but the problem is that it apparently takes a lot of effort to compute
(n− 1)! mod n; after all, to do this naively would require n− 2 multiplications.

However, Fermat’s Little Theorem does give us a way to possibly test for primality.
Suppose we are given a number n, which we wish to test for primality. Suppose we
compute an mod n. If we find that an 6≡ a mod n, then we know that n must be
composite, since if n were prime, an ≡ a mod n must be true.

To really check whether this is a good test for primality, we need to know a few
things. First, is it possible to compute an mod n quickly? If so, is it the case that
for every composite integer n, is there some a such that an 6≡ a mod n? These are
the questions we will discuss in the next class.

http://en.wikipedia.org/wiki/Wilson's_theorem
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