
MATH 25 CLASS 16 NOTES, OCT 26 2011

Contents

1. Fast exponentiation mod n 1
2. Fermat’s Little Theorem as a compositeness test 2
3. Strong psuedoprimes and the Miller-Rabin test 4

1. Fast exponentiation mod n

Today we will discuss how one might use Fermat’s Little Theorem and some vari-
ations on it to test whether a number n is prime or composite. Recall that FLT says
that if p is a prime, and p - a, then ap−1 ≡ 1 mod p. So if n is an integer, and we
happen to find a number a such that n - a and an−1 6≡ 1 mod n, then n must be
composite. We call this a compositeness test, since if we find that an−1 6≡ 1 mod n,
then n must be composite. If we find an−1 ≡ 1 mod n, then we cannot conclude
anything about n – we will see that n might be prime, or n might be composite. In
any case, we will come back to this point later.

For this to actually be a useful test, we want to know that the calculation of an−1

mod n can be carried out reasonably rapidly. For instance, perhaps n is a 100-digit
number; this is beyond the reach of trial division, so n ≈ 10100 ≈ 2300. Trial division
would take something on the order of

√
n ≈ 2150 possible trial divisions, which is a

gigantic number.
So suppose we want to calculate an−1 mod n, for some 1 < a < n. Clearly n - a.

The most naive approach to calculating this congruence class is to multiply a by itself
n − 2 times, which would still take far too many operations to be of use. But there
is a way to drastically cut back on the number of multiplications which one needs to
carry out, using an idea called successive squaring.

The idea is simple. Suppose we want to calculate something like a16. Instead of
multiplying a by itself 15 times, we can instead calculate a2, then square that to
obtain a4, then square that to get a8, and finally square that to get a16. This takes a
total of 4 = log2 16 operations instead of 15. More generally, if we want to calculate
ak mod n, we begin by writing k in base 2 (binary). For example, suppose

k = ar2
r + ar−12

r−1 + . . . + a12 + a0,

where each ai = 0 or 1. To compute ak mod n, we first calculate each of the
r powers a2 mod n, a4 mod n, a8 mod n, . . . , a2

r
mod n. This takes a total of r

multiplications mod n. To compute ak mod n, we simply multiply together the
appropriate powers of a. For instance, if k = 24+22+1, we would multiply a2

4
, a2

2
, a2

1

together to calculate ak mod n. There are a maximum of r multiplications here as
well, so to calculate ak mod n required a total of at most 2r multiplications mod n,
and also a little bit of storage space to store the 2ith powers of a. Now notice that

1



2 MATH 25 CLASS 16 NOTES, OCT 26 2011

r ≤ log2 k + 1, so even if k is of size 2300, we still have r ≤ 301, so that we need no
more than about 600 multiplications mod n to compute ak mod n. This is clearly a
huge gain over the naive approach of just multiplying a by itself n− 2 times!

Example. Compute the least positive residue of 3196 mod 263. We first write the
exponent in binary: 196 = 27 + 26 + 22. We now compute the 2ith powers of 3
mod 263, either by hand or with the assistance of a calculator:

32 ≡ 9 mod 263, 34 ≡ 81 mod 263, 38 ≡ 812 ≡ 249 mod 263, 316 ≡ 2492 ≡ 196 mod 263,

332 ≡ 1962 ≡ 18 mod 263, 364 ≡ 182 ≡ 61 mod 263, 3128 ≡ 612 ≡ 39 mod 263.

We have 3196 = 3128 · 364 · 34, so 3196 ≡ 39 · 61 · 81 ≡ 183 mod 263.

The main point behind this method is that it is computationally very feasible,
using modern computers, to calculate ak mod n, even if k (and n) are numbers
with hundreds, thousands, or even tens of thousands of digits. Also notice that in
computers, we already get the binary expansion of k for free, since computers store
numbers in binary. In summary, we have the following algorithm for computing ak

mod n:

Algorithm 1 (Fast exponentiation mod n). Let a, k, n > 0. To compute ak mod n
using at most 2 log2 k + 2 multiplications mod n, first write k in binary. Then
compute a, a2, a2

2
, a2

3
, . . . , a2

r
mod n, where r is an integer such that 2r ≤ k <

2r+1. Finally, compute ak mod n by multiplying the appropriate powers of a already
computed, using the binary expansion of k to tell us which powers to multiply together.

2. Fermat’s Little Theorem as a compositeness test

Now that we know exponentiation mod n is a fast operation, let us return to the
question of testing whether n is prime or composite. As we said earlier, if there is an
a such that 1 < a < n, and an−1 6≡ 1 mod n, then n must be composite. This yields
the following algorithm:

Algorithm 2 (Fermat compositeness test). Let n be a positive integer we which to
test for compositeness, and let a be any integer with 1 < a < n. If an−1 6≡ 1 mod n,
then n is composite. If an−1 ≡ 1 mod n, the test is inconclusive.

Example. Let a = 2, n = 2257. (One could use trial division to test n, but let’s use
FLT as a compositeness test.) One calculates that 22256 ≡ 2193 mod 2257, which is
clearly not 1 mod 2257, so 2257 is composite. Notice that while this test conclusively
tells us that n is composite, it does not actually provide a factor of n.

On the other hand, the next example shows that sometimes composite numbers
can slip through this test.

Example. Let a = 2, n = 341. Then 2340 ≡ 1 mod 341, but 341 = 11 · 31.

This example leads to the following definition:



MATH 25 CLASS 16 NOTES, OCT 26 2011 3

Definition 1. Let a > 1 be a fixed positive integer. We say that a composite number
n is a (Fermat) pseudoprime to the base a if an−1 ≡ 1 mod n.

In other words, a pseudoprime to the base a is mimicking the behavior of a prime
number with respect to the FLT compositeness test, despite the fact that it is not
prime. The previous example shows that 341 is a pseudoprime to the base 2.

To answer the question of how reliable the Fermat test is as a compositeness test
requires us to be able to answer questions like how many psuedoprimes to base a
there are. This is beyond the scope of this class, but suffice it to say that in practice
the above test usually works quite well, in the sense that given a ‘random’ composite
integer n, and a ‘random’ base a, an−1 6≡ 1 mod n is ‘usually’ true.

However, are there any cases of composite numbers n in which it is practically
impossible to use the Fermat compositeness test to determine whether n is actually
composite? The answer is yes!

Definition 2. Let n be a positive composite integer. We say that n is a Carmichael
numbers if an ≡ a mod n for all a.

A Carmichael number is thus a number for which the Fermat compositeness test is
inconclusive for practically every value of a. It certainly is inconclusive if gcd(a, n) =
1, because then we know that an−1 ≡ 1 mod n. If gcd(a, n) > 1, then an−1 ≡ 1
mod n is impossible, so we would be able to detect that n is composite eventually if
we kept trying different choices of a. As a practical matter, however, this is just as
slow as trial division (if not slower), since we would have to find an a which, if not
a divisor of n, at least had nontrivial gcd with n, which for instance would be very
unlikely if n were a product of two large primes.

Example. We will show that 561 is a Carmichael number. First, notice that 3|561,
so 561 is composite. We want to show that a561 ≡ a mod 561 for any a.

First, we factor 561 = 3 · 11 · 17. Proving that a561 ≡ a mod 561 is equivalent to
proving that a561 ≡ a mod 3, a561 ≡ a mod 11, a561 ≡ a mod 17.

To show that a561 ≡ a mod 3, first notice that if 3|a then this is automatically
satisfied. So suppose 3 - a; then FLT says that a2 ≡ 1 mod 3, or a560 ≡ 1 mod 3.
But then a561 ≡ a mod 3, as desired. Similarly, for a561 ≡ a mod 11, if 11 - a, then
a10 ≡ 1 mod 561, or a560 ≡ 1 mod 561. And for a561 ≡ a mod 17, if 17 - a, then
a16 ≡ 1 mod 561. Since 560 = 16 ·35, again we have a560 ≡ 1 mod 17. So 561 really
is a Carmichael number.

The existence of Carmichael numbers does not augur well for using the Fermat test
as a definitive test for compositeness. After all, suppose you wanted to test a number
n for compositeness, and started computing an−1 mod n for various random values
of a. Suppose you kept getting 1 mod n back. What can you conclude? Well, as a
definitive matter, you can conclude nothing. After all, maybe n is prime – then you
would expect to keep getting 1 mod n. But maybe n is a Carmichael number, and
you haven’t been lucky enough to pick a with gcd(a, n) > 1. (Or maybe n isn’t even
a Carmichael number, and you just happened to pick a such that an−1 ≡ 1 mod n.)

The question of, say, what the probability that the Fermat test will return “com-
posite” if you feed it a random composite number n is a very good and interesting



4 MATH 25 CLASS 16 NOTES, OCT 26 2011

one, but also is one that is beyond the scope of this class. Another interesting ques-
tion is how many Carmichael numbers there are. As a matter of fact, it is a difficult
theorem of Alford, Granville, and Pomerance in 1992 that there are infinitely many
Carmichael numbers, and they show that there are at least x2/7 Carmichael numbers
of size up to x if x is large.

So the Fermat compositeness test works ‘most of the time’, but if we keep getting
inconclusive results, we cannot conclude anything about whether the number n we are
testing is prime or not. In particular, since Carmichael numbers exist, to conclusively
rule out a number as prime using the Fermat test would require at least as much work
as trial division, since we would have to choose a with gcd(a, n) > 1.

Is there a way to slightly modify the Fermat test so that numbers like Carmichael
numbers, which fool the test almost all the time, do not exist anymore? The answer
is yes!

3. Strong psuedoprimes and the Miller-Rabin test

The following theorem provides a slight modification of the Fermat compositeness
test:

Theorem 1. Let p be an odd prime, and let p− 1 = 2em, where m is odd. (So 2e is
the largest power of 2 dividing p− 1.) Let a be an integer such that p - a. Then one
of the following is true:

• Either am ≡ 1 mod p, or
• a2

rm ≡ −1 mod p for some r satisfying 0 ≤ r < e.

Proof. We use the two basic facts that ap−1 ≡ 1 mod p (Fermat’s Little Theorem),
and that the equation x2 ≡ 1 mod p has the two solutions x ≡ ±1 mod p.

We know that a2
em ≡ 1 mod p, by Fermat’s Little Theorem. Because x2 ≡ 1

mod p has the two solutions x ≡ ±1 mod p, and (a2
e−1m)2 = a2

em, we must have

a2
e−1m mod ± 1 mod p. If this number is ≡ −1 mod p, we are done; if not, just

repeat this argument with 2e−1 in place of 2e. If we find that a2
e−2m ≡ −1 mod p,

we are done, if not, repeat this argument with 2e−2 in place of 2e−1. We continue in
this way until we either find some r with a2

rm ≡ −1 mod p, or we eventually end
up with am ≡ 1 mod p. �

We can use this theorem as a compositeness test. Suppose we want to test an odd
number n for compositeness. Then we write n − 1 = 2em, for some odd m, e > 0.
We then calculate am mod n, which is quick to do. We then compute a2

rm mod n,
which means we just repeatedly square am mod n, until we reach a2

em mod n. We
look at this list and check whether the conclusion of the above theorem is true: that
is, whether one of these numbers is ≡ −1 mod n, and if not, whether am ≡ 1 mod n
is true. If no a2

rm ≡ −1 mod n, and also am 6≡ 1 mod n, then we know that n is
composite. If, on the other hand, this is true, we cannot conclude anything about
the primality or compositeness of n. Call a composite number n which passes this
test for a given number a a strong pseudoprime to the base a.

Examples.

• First, notice that any composite n which is a strong psuedoprime to base a
is also a psuedoprime to base a. Indeed, if a, n pass the strong psuedoprime



MATH 25 CLASS 16 NOTES, OCT 26 2011 5

test, either am ≡ 1 mod n is true, in which case a2
em ≡ 1 mod n is also

true (we just square 1 e times), or a2
rm ≡ −1 mod n is true, in which case

a2
r+1m ≡ 1 mod n, and hence an−1 ≡ 1 mod n is true (notice that we are

using the fact that r < e here).
• Recall n = 341 is a psuedoprime to base 2. Let’s see if it’s a strong pseudo-

prime. First, we start with n− 1 = 340, and factor out as many powers of 2
as possible. We see that 340 = 22 · 85, so e = 2,m = 85. We now compute
285 mod 341, and then square this repeatedly until we reach 2340 mod 341.
Either by hand or using a calculator, we find

285 ≡ 32 mod 341, 2170 ≡ 1 mod 341, 2340 ≡ 1 mod 341.

Since 285 6≡ 1 mod 341, and 285, 2170 6≡ −1 mod 341, then 341 is not a strong
pseudoprime to base 2, and hence is composite. So the modified version of
Fermat’s compositeness test catches composite numbers which the original
compositeness test could not, a great sign!
• We will show that n = 781 is a strong pseudoprime to base a = 5. First,

notice that 781 = 11 · 71, so 781 is composite. We now need to factor all the
powers of 2 from n− 1 = 780. One quickly checks that 780 = 22 · 195. In our
notation, e = 2,m = 195.

To use the modified Fermat compositeness test, we want to compute 5195

mod 781 and 52·195 mod 781. A calculator (or successive squaring by hand)
tells us

5195 ≡ 1 mod 781, 5390 ≡ 1 mod 781,

and since we found that am ≡ 1 mod 781, the modified Fermat compositeness
test is inconclusive. Of course, you can easily see that 5780 ≡ 1 mod 781, so
that 781 is a psuedoprime to base 5 as well.
• This isn’t an example so much as a remark, but notice that the modified

Fermat compositeness test is well-suited to run on a computer. For instance,
because integers are represented in binary on a computer, to find the largest
power of 2 dividing n − 1 we just need to look at how many 0s are at the
tail end of the binary representation of n − 1. We can quickly calculate am

mod n, using successive squaring, and then we only need to square this a few
more times to fully implement the modified test.

The main theoretical question now is to determine whether a situation like Carmichael
numbers occurs for the modified Fermat compositeness test. Let n be a composite
integer, and let S(n) be the number of integers a, with 1 < a < n, such that n is
a strong psuedoprime to the base a. The following theorem is true, which is too
difficult for us to prove in this class:

Theorem 2. For n a composite, odd integer > 9, one has S(n) ≤ n/4.

Another way of saying this is that if we are testing a number n for compositeness,
and it happens to be composite, if we randomly choose a base a from 1 to n, there is at
least a 3/4 chance that n will be shown to be composite using the strong psuedoprime
test. This theorem is the basis for what is known as the probabilistic Miller-Rabin
test : to test a number n for compositeness, you randomly select various bases a, with



6 MATH 25 CLASS 16 NOTES, OCT 26 2011

1 < a < n, say k times. If any one of these tests returns a result of composite, you
know n is composite. If n is composite but all the k tests were inconclusive, then
there is at most a 1/4k chance you are wrong if you claim that n is prime. Since this
test is fast to run (it only involves a binary bit check and exponentiation mod n),
you can probably afford to run the test a few hundred times, which will make the
probability of error very small.

What if we want to use this test to definitively check whether n is composite or
prime? Suppose n is composite. Since there are at most n/4 bases a for which the
modified Fermat test is inconclusive, if we test a = 2, 3, . . . , n/4 + 1, at least one of
these will detect n as composite. Of course, this is an intolerably large number of
cases to check.

However, it has been shown that if something known as the generalized Riemann
Hypothesis (or rather, a special case of the GRH) is true, then as a matter of fact there
is some a which will detect n as composite using the modified Fermat test satisfying
a < 2 log2 n. Since 2 log2 n is a lot smaller than n/4 (if n ≈ 10100, 2 log2 n ≈ 80000,
while n/4 ≈ 1099), if the GRH is true then in reality we need only test a relatively
small number of a before we are guaranteed to know that n is prime or composite. Of
course, one should always entertain the possibility, however unlikely, that the GRH
is false.

How does this all work in practice? If you want to test whether n is prime or
composite, run the probabilistic Miller-Rabin test however many times you want
to get the error below a certain threshold. If you find n is composite, great; if your
multiple runs are inconclusive, then it is very likely that your number is prime. At this
point, you can either just assume your number is prime (which might be hazardous if
your application is mission-critical, but on the other hand if the probability of error
is really small, that error will be dwarfed by the possibility of other things going
wrong, like your computer malfunctioning during calculations or the sun exploding),
or actually prove that your number is prime using more sophisticated primality testing
algorithms which we will not have time to talk about in this class. It is worth pointing
out that the best known deterministic primality proving algorithms work for a far
larger range than the best known factorization algorithms.


	1. Fast exponentiation mod n
	2. Fermat's Little Theorem as a compositeness test
	3. Strong psuedoprimes and the Miller-Rabin test

