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1. A generalization of Fermat’s Little Theorem

We’ve gotten a lot of mileage out of Fermat’s Little Theorem. It says that if p is
prime, and p - a, then ap−1 ≡ 1 mod p. Equivalently, we can drop the restriction
on a, and then ap ≡ a mod p. FLT has provided us a method to rapidly test
for compositeness of numbers; the simple Fermat compositeness test works a good
percentage of the time, and the modified Miller-Rabin test works very frequently.

What if the modulus is not prime? Is there some sort of statement like Fermat’s
Little Theorem? A bit of thought will show that an−1 ≡ 1 mod n can be false for
lots of values of a if n is composite; for instance, if n = 4, then a3 ≡ 1 mod 4 if and
only if a ≡ 1 mod 4. So this is not so promising.

The correct statement is the following: let φ(n) be the number of integers with
1 ≤ a ≤ n such that gcd(a, n) = 1. For example, φ(4) = 2, φ(6) = 2, φ(7) = 6. This
function is known as the Euler totient function.

Theorem 1 (Fermat-Euler Theorem, Theorem 5.3). Let n be any positive integer,
and let a be an integer such that gcd(a, n) = 1. Then

aφ(n) ≡ 1 mod n.

Before proving this, let’s look at a few examples.

• This is called the Fermat-Euler theorem not because Fermat codiscovered
it with Euler (Fermat died about 40 years before Euler was born), but be-
cause Euler discovered this theorem, which is a generalization of Fermat’s
Little Theorem. Indeed, if n is prime, then φ(n) = n − 1, and the condition
gcd(a, n) = 1 is equivalent to n - a.
• Let n = 12. Some quick calculation shows that φ(12) = 4. Then a4 ≡ 1

mod 12 if a ≡ 1, 5, 7, 11 mod 12.

Proof. (Proof of Fermat-Euler theorem) The basic idea behind proving the Fermat-
Euler theorem is the same as the proof of Fermat’s Little Theorem. Let r1, . . . , rφ(n)
be a complete set of representatives mod n of congruence classes which are relatively
prime to n; for instance, if we require 1 ≤ ri ≤ n, then we can choose the ri to be
the φ(n) positive numbers ≤ n which are relatively prime to n.

Let a be any integer with gcd(a, n) = 1, as specified in the theorem. We claim
that ar1, . . . , arφ(n) is still a complete set of representatives mod n of congruence
classes relatively prime to n. Indeed, since gcd(ri, n) = gcd(a, n) = 1, it is true that
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gcd(ari, n) = 1 for all i. So it only remains to check that all the ari are inequivalent
to each other; this is clear since ari ≡ arj mod n implies a(ri − rj) ≡ 0 mod n.
Since gcd(a, n) = 1, we can cancel out a from both sides of the congruence, so this
implies ri ≡ rj mod n. And the original definition of the ri forces ri = rj, as desired.

So mod n, the set ar1, . . . , arφ(n) is a rearrangement of the set r1, . . . , rφ(n). Multiply
each of these lists together; we get

r1 . . . rφ(n) ≡ (ar1) . . . (arφ(n)) = aφ(n)(r1 . . . rφ(n)) mod n.

On the other hand, since all the ri are relatively prime to n, we can cancel them all
out from both sides of the congruence. We are left with

aφ(n) ≡ 1 mod n,

which was what we wanted to prove. �

Example. As an illustration of the idea behind the proof, suppose n = 8. Then
a complete set of representatives of congruence classes mod 8 relatively prime to
8 is given by 1, 3, 5, 7. Let a be any number relatively prime to 8; say, a = 3.
Then a, 3a, 5a, 7a = 3, 9, 15, 21 is still a complete set of representatives of congruence
classes mod 8 relatively prime to 8, since 3, 9, 15, 21 ≡ 3, 1, 7, 5 mod 8. In particular,
(1)(3)(5)(7) ≡ (3)(9)(15)(21) = 34(1)(3)(5)(7) mod 8, which implies that 34 ≡ 1
mod 8.

2. Calculating φ(n)

In order to use the Fermat-Euler theorem, we might want to calculate φ(n). And
in any case, it is an interesting question to actually determine a formula for φ(n).

We already know what happens if n is a prime p. Then it is clear that φ(p) = p−1.
We can extend this to prime powers fairly easily:

Lemma 1 (Lemma 5.4). For p prime, e ≥ 1, φ(pe) = pe(1− 1/p) = pe − pe−1.

Proof. It is clear that gcd(a, pe) = 1 if and only if p - a. To calculate φ(pe), then, we
want to count the number of integers in the list 1, 2, . . . , pe which are not divisible by
p. But this is easy to do; the number which are divisible by p is clearly pe−1 (in any
case, this was more or less proven in a homework problem). So φ(pe) = pe − pe−1, as
desired. �

Right now, we can calculate φ(n) when n is a prime, or more generally, a prime
power. We know that every integer n is a (unique) product of prime powers. So if
we can find a way to express φ(n) in terms of φ(pe), for the various pe appearing in
the prime factorization of n, we will have a formula for φ(n). The following lemma
will help us:

Lemma 2. Let m,n be relatively prime positive integers. Let a1, . . . , am be a complete
set of residues mod m, and let b1, . . . , bn be a complete set of residues mod n. Then
nai +mbj, where 1 ≤ i ≤ m, 1 ≤ j ≤ n, form a complete set of residues mod mn.
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Proof. Clearly there are mn elements (possibly not distinct) in the list nai +mbj as
i, j vary. Therefore, to show that this is a complete set of representatives, it suffices
to show that any two different choices for the ordered pair (i, j) give distinct classes
mod mn.

Suppose that nai + mbj ≡ nai′ + mbj′ mod mn. Moving everything to the left
side, this is the same as

n(ai − ai′) +m(bj − bj′) ≡ 0 mod mn.

Because m,n are relatively prime, this is true if and only if the two following congru-
ences are simultaneously true:

n(ai − ai′) +m(bj − bj′) ≡ 0 mod m,n(ai − ai′) +m(bj − bj′) ≡ 0 mod n.

In the first congruence, notice that m always divides the second term, regardless of
what j, j′ are. So the first congruence is equivalent to n(ai − ai′) ≡ 0 mod m. We
again use the fact that m,n are relatively prime to divide both sides of the congruence
by n, to reach the equivalent congruence ai − ai′ ≡ 0 mod m. In a similar way, we
find the second congruence in our list above is equivalent to bj − bj′ ≡ 0 mod n.

Now we use the fact that the ai, bj were a complete set of representatives mod m,n
respectively. The only way these two congruences can be true is if ai = ai′ , bj = bj′ ,
which is what we wanted to prove. �

Example. Let m = 2, n = 3, and let a1, a2 = 0, 1, b1, b2, b3 = 0, 1, 2. Then the
previous lemma says that 3a+ 2b, as a, b vary across a = 0, 1, b = 0, 1, 2, give a com-
plete set of representatives mod 6. Indeed, the values are 0, 2, 4, 3, 5, 7 ≡ 0, 2, 4, 3, 5, 1
mod 6.

Using this, we can now prove the following theorem:

Theorem 2 (Theorem 5.6). If m,n are relatively prime, then φ(mn) = φ(m)φ(n).

Proof. Let ai, 1 ≤ i ≤ m be a complete set of representatives mod m, and similarly
let bj, 1 ≤ j ≤ n be a complete set mod n. The previous lemma tells us na+mb is a
complete set mod mn, as a, b range across ai, bj respectively.

If necessary, relabel the ai, bj to ensure that a1, . . . , aφ(m) form a complete set of
representatives mod m which are relatively prime to m, and similarly for b1, . . . , bφ(n).
We claim that na + mb is relatively prime to mn if and only if a is one of the
a1, . . . , aφ(m), and b is one of the b1, . . . , bφ(n).

Indeed, gcd(na + mb,mn) = 1 if and only if gcd(na + mb,m) = 1 and gcd(na +
mb, n) = 1. Since mb is a multiple of m, regardless of the value of b, gcd(na+mb,m) =
1 if and only if gcd(na,m) = 1. Since gcd(n,m) = 1, this is true if and only if
gcd(a,m) = 1, which means that a is one of the ai, 1 ≤ i ≤ φ(m). Similarly,
gcd(na+mb, n) = 1 if and only if b is one of the bj, 1 ≤ j ≤ φ(n).

Notice that the number of elements in na+mb which are relatively prime to mn is
the same as φ(mn). Indeed, since na+mb gives a complete set of representatives mod
mn, the remainders of these numbers are some re-ordering of 0, 1, 2, . . . ,mn− 1, and
the number of elements in this list which are relatively prime to mn is just φ(mn).
Since the property of a number k being relatively prime to mn is only dependent on
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k mod mn, a number na+mb is relatively prime to mn if and only if its remainder
after division by nm is also relatively prime to mn.

We have shown that na + mb is relatively prime to mn if and only if a, b are
relatively prime to m,n respectively. There are φ(m) choices for such a and φ(n)
choices for such n; therefore there are φ(m)φ(n) na+mb which are relatively prime
to mn, and we already knew that each of these na + mb were distinct mod mn.
Therefore φ(m)φ(n) = φ(mn), as desired.

�

The book uses a slightly different method to prove this theorem. Instead of looking
at na + mb, the book considers na + b, where 0 ≤ a < m, 1 ≤ b ≤ m. As a, b vary
in these intervals, na + b lists all the numbers 1, 2, . . . , nm exactly once. The book
then shows that gcd(na + b,mn) = 1 if and only if gcd(a,m) = 1 and gcd(b, n) = 1,
and then counting the number of possible choices for a, b yields the theorem. Yet
another idea for proving this theorem is to use the Chinese Remainder Theorem (see
HW assignment 6).

This theorem provides all the information we need to compute φ(n), assuming that
we can factor n. If n = pe11 . . . pekk , then

φ(n) =
∏
i

φ(peii ) =
∏
i

(peii − p
ei−1
i ) = n

∏
i

(
1− 1

pi

)
.

In general, a function f : N → N, or more generally f : N → R or C is called
multiplicative if f(1) = 1, and f(mn) = f(m)f(n) whenever m,n are relatively
prime. So the previous theorem tells us that φ is a multiplicative function. Notice
that every multiplicative function is completely determined by its values on prime
powers. In number theory, there are many different multiplicative functions which
are important; we will come across a few more later on in this class.

Examples.

• Calculate φ(100). Instead of listing all the numbers from 1 to 100 and then
determining which are relatively prime to 100 (a painful thing to do), we
can use the above formula. The first step is to factor 100 = 22 · 52. Then
φ(100) = φ(22)φ(52) = (4− 2)(25− 5) = 40.
• A listing of the first few values of φ gives 1, 1, 2, 2, 4, 2, 6, 4, . . .. We will show

that φ(n) is odd only for n = 1, 2. Indeed, first notice that if p is an odd
prime, then φ(pe) is even for any e ≥ 1, since φ(pe) = pe− pe−1 is a difference
of two odd numbers. So if n has an odd prime factor p, then φ(n) will be
even, since φ(pe) divides φ(n) and φ(pe) is even.

So suppose n has no odd prime factors; ie, is a power of 2. Then φ(2e) =
2e − 2e−1 = 2e−1. Clearly this is odd only when e = 1 (this formula is not
applicable when e = 0). So φ(n) is only odd for n = 1, 2.
• We say that a mod n is a unit mod n if it has a multiplicative inverse; that

is, there exists a number b mod n such that ab ≡ 1 mod n. For instance,
when n = 4, 1, 3 mod 4 are units, while 0, 2 mod 4 are not. Recall that we
saw that a mod n has a multiplicative inverse if and only if gcd(a, n) = 1.
Therefore, the number of units mod n is equal to φ(n).
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We conclude with a proposition whose importance is not apparent right now, but
is interesting and has a neat method of proof. In about a week we will see how this
proposition can be applied to prove other theorems.

Proposition 1. Let n be a positive integer. Then∑
d|n

φ(d) = n,

where the summation runs over all positive divisors of n, including 1 and n.

Proof. We will group up all the numbers from 1, 2, . . . , n into various sets depending
on their gcd with n. Let Sd be the subset of 1, 2, . . . , n which consists of all the
integers whose gcd with n is exactly equal to n/d. In set theoretic notation, Sd =
{a | 1 ≤ a ≤ n, gcd(a, n) = n/d}.

The first claim is that the various sets Sd, as d ranges over divisors of n, partition
1, 2, . . . , n. First, notice every a, 1 ≤ a ≤ n, is a member of some Sd with d | n,
since gcd(a, n) | n. Furthermore, all these sets are disjoint, since gcd(a, n) is a fixed
number, so that a can only belong to Sgcd(a,n).

This means that the sum of the sizes of Sd is equal to the size of the set {1, 2, . . . , n},
which clearly is n. Therefore, to prove the proposition it is enough to show that each
Sd has size φ(d).

A number a is an element of Sd if and only if 1 ≤ a ≤ n and gcd(a, n) = n/d.
This in turn is equivalent to there being an a′ such that a = (n/d)a′, 1 ≤ a′ ≤ d, and
gcd(a′, d) = 1. The first two conditions are fairly clear; for the last, recall that if d is
a common divisor of a, b, then gcd(a/d, b/d) = gcd(a, b)/d. How many choices of a′

are there? Exactly φ(d). Therefore, Sd has size φ(d) as claimed. �

Example. As an illustration of the idea of the proof, let n = 12. Then S12 consists
of the numbers from 1 to 12 which have gcd 12/12 = 1 with n; we quickly see that
S12 = {1, 5, 7, 11}. Similarly, S6 consists of those numbers from 1 to 12 which have
gcd 12/6 = 2 with n = 12. One sees that S6 = {2, 10}. For d = 4, 3, 2, 1, one checks
that S4 = {3, 9}, S3 = {4, 8}, S2 = {6}, S1 = {12}. You can quickly check that every
number from 1 to 12 lies in exactly one of these sets, and that the size of Sd is φ(d).


	1. A generalization of Fermat's Little Theorem
	2. Calculating (n)

