
MATH 25 CLASS 19 NOTES, NOV 2 2011

Contents

1. An old cryptosystem: the Caesar cipher 1
2. A modern cryptosystem: RSA 3

1. An old cryptosystem: the Caesar cipher

We will take a brief detour to learn about a simple and elegant, but important,
application of the theory we have been learning (and in particular, the Fermat-Euler
theorem) to the real world. A problem which is as old as civilization itself is the
question of how to transmit information from one party to another in such a way
so that third parties (‘adversaries’) are unable to read that information, even if they
intercept it mid-transit. Historically, this was most important to governments, espe-
cially during wartime, but in the present this problem is relevant to everybody, since
lots of important information is transmitted over the Internet nowadays.

The practice of transmitting information in a way to prevent unwanted parties
from reading that information even if they intercept it is called cryptography. An
ancient method for encoding information in the Latin alphabet was used by Julius
Caesar, when he was a general subjugating ‘barbarian’ civilizations for the then
Roman Republic. When he wanted to transmit orders or information to his generals,
he would take whatever text he wanted to transmit – known in cryptography as
the plaintext – and then shift every letter by some constant amount. For instance,
perhaps he took the plaintext and replaced each letter with the one which came three
places later in the alphabet. In the case of X, Y, and Z, he would shift those to A, B,
and C, respectively. A message like ”HELLO” would then become ”KHOOR”. The
result of encrypting a plaintext is known as the ciphertext. (Obviously he never sent
the word ”hello” since he spoke Latin, not English, but the idea is the same.) We
will disregard the question of what happens if we want to transmit numbers in this
way; the above scheme can easily be extended to account for numbers as well.

Mathematically, we can think of Caesar’s method, nowadays known as the Caesar
cipher , as an example of mod 26 arithmetic. If we think of ‘A’ as synonymous with
the congruence class 0 mod 26, ‘B’ with 1 mod 26, . . . , ‘Z’ with 25 mod 26, then the
above example corresponds to the operation x mod 26 7→ x+ 3 mod 26. Of course,
there is nothing special with the map x 7→ x+ 3; we could have used any x 7→ x+ a,
where probably we would want a 6≡ 0 mod 26 – otherwise, this map doesn’t change
the message at all, and would we worthless as an encryption method.

It is probably true that this encryption method was secure back in Caesar’s time.
More likely than not, his enemies were illiterate, if not in their own languages, then
certainly in Latin, and even if some people had passing literacy in Latin, it seems
somewhat unlikely that they knew enough to break the Caesar cipher. However, if

1

http://en.wikipedia.org/wiki/Caesar_cipher
http://en.wikipedia.org/wiki/Caesar_cipher


2 MATH 25 CLASS 19 NOTES, NOV 2 2011

you think about it, the Caesar cipher is very easy to break. Suppose we did not even
know what the value of a in the map x 7→ x+a was, but we knew that there was some
value of a which was being used in this way to encode a message. Then all we have to
do is try out all 26 different values of a mod 26, and find the one result which actually
makes sense as a message. For instance, ”KHOOR” with a = 3 yields ”HELLO”,
but with a = 4 yields ”GDKKN”, which makes no sense. It is basically impossible
for any message of appreciable length to make sense for two different values of a.

So perhaps you decide that the Caesar cipher is weak and decide to modify it. One
possible way is to use a map x 7→ bx + a instead of x 7→ x + a. Of course, you need
to make sure that a, b are selected in such a way to ensure that there is a unique way
to decrypt any encrypted message. For instance, if a = 26, then x 7→ 26x + b ≡ b
mod 26 would not be effective, because every letter would change to the same letter,
and there would be no way to recover the original message from an encrypted message.
However, suppose we got around this problem. More generally, maybe we just decide
to use some bijective map f : Z/26Z→ Z/26Z to encrypt a message. It seems much
harder to break this using brute force, because there are 26! different such maps; way
too much for anyone to try by hand, although perhaps it might be breakable using
brute force on a computer.

However, brute force is far from the best way to break such an encryption scheme.
Suppose we intercept a message which we know is encoded using a map f : Z/26Z→
Z/26Z to permute the letters of the alphabet. It is a statistical fact that in any English
message of appreciable length (say, of paragraph length), that regardless of the actual
subject matter of the message, certain letters appear most frequently. In particular,
the letters ‘e’, ‘t’ are almost always the most common letters in the English language.
With this in mind, one can systematically try to break an encrypted message using
this type of frequency analysis .

So the Caesar cipher seems quite unsecure against any adversary who knows some
basic principles of cryptography. Modifications of the Caesar cipher, some of which
are quite hard to break, even with frequency analysis, were developed all the way
through the 19th century. However, all of the systems shared a common feature.
Notice that in the Caesar cipher, knowing how to encrypt a message is equivalent to
knowing how to decrypt a message, and conversely knowing how to decrypt a message
is equivalent to knowing how to encrypt a message. This means that the means by
which a message must be encrypted must be distributed to all appropriate parties
somehow before the encryption method is actually used, and the encryption method
must be kept secret from all potential adversaries. Cryptosystems in which knowledge
of encryption and decryption are essentially equivalent are known as symmetric key
cryptosystems.

For instance, if Caesar’s generals wanted to decode their messages, they needed to
know the actual value amount of shift to apply to each letter to encrypt/decrypt a
message. This has to be agreed upon somehow; perhaps they were given instructions
in Rome when they were together. But perhaps a general is captured during battle;
there is the possibility that his captors will determine how to decrypt messages by
searching his papers or simply forcing the knowledge out of him.

So in summary, the Caesar cipher is a simple method of encrypting text which does
not require a lot of effort to encrypt or decrypt, but has the drawbacks that it can be

http://en.wikipedia.org/wiki/Frequency_analysis
http://en.wikipedia.org/wiki/Symmetric-key_algorithm


MATH 25 CLASS 19 NOTES, NOV 2 2011 3

easily broken via frequency analysis, and also the fact that knowledge of encryption
is equivalent to knowledge of decryption.

2. A modern cryptosystem: RSA

Cryptography become more and more important as time went by; in World War II
cryptography played a critical role in the advantage the Allies had over the Axis as
the war went on. For instance, in the Battle of Midway, one of the most important
naval battles in the Pacific Theater, the Americans had a decisive advantage over the
Japanese when American codebreakers were able to decrypt Japanese communica-
tions and obtain information on the location and strength of Japanese forces before
the battle began. It was already clear that mathematicians, and people who we would
now describe as computer scientists, as well as engineers, had much to contribute to
the practice of war.

We will describe a cryptosystem which was developed in the late 1970s by Rivest,
Shamir, and Adleman, now known as RSA. It has the elegant feature of being easily
implemented and understood by anybody with some knowledge of number theory,
and of course has the practical feature that as of modern times, no one (publicly)
knows of any efficient way to break the RSA cryptosystem. We will not actually
describe the precise way in which RSA is implemented; however, we will describe
the basic mathematical idea underlying RSA. Improvements in its security have been
made over the past few decades, but the basic idea remains intact.

In contrast to the example we used with the Caesar cipher, we will only transmit
numbers using RSA. In practice, this is no drawback, because we can always agree in
some pre-determined way on how to convert letters and other characters to numbers.
(Perhaps we use ASCII, or some other custom conversion method.) It does not matter
if this method is public knowledge or not.

So suppose there are two people, Alice and Bob, and Bob wants to send a message,
which is the number x, securely to Alice. Here is how the RSA system works. Alice
begins by choosing two large, distinct prime numbers, p and q. She keeps them secret,
and does not tell anybody what they are. She calculates N = pq. She then calculates
φ(N). We know that φ(N) = (p− 1)(q− 1), so for Alice it is easy for her to compute
what φ(N) is. Alice then chooses some integer e satisfying 1 < e < φ(N) and
gcd(e, φ(N)) = 1. The second condition is not automatically satisfied for arbitrary
choices of e, but it is fast to calculate gcd(e, φ(N)), using Euclid’s algorithm, and in
practice Alice will not have to make too many different choices of e to find one which
is coprime to φ(N). This number e is sometimes called the encryption exponent.

Alice then publicly releases the ordered pair (N, e), which is called Alice’s public
key. (Remember, Alice keeps φ(N), p, q private.) Anybody can see this; certainly
Bob can see this, but any potential adversaries can see this as well. If Bob wants to
send the message x, which we now assume satisfies 0 ≤ x < N (if not, Bob can break
up his message into smaller pieces, each of which is represented by a number less
than N , and transmit them in sequence), he calculates xe mod N . Notice that this
is possible for Bob to do, because Alice has made N and e public knowledge, and is
fast to do, since xe mod N can be calculated quickly, even if N and e are large. Bob
then sends xe mod N to Alice. This is the encrypted message.

http://en.wikipedia.org/wiki/RSA


4 MATH 25 CLASS 19 NOTES, NOV 2 2011

How does Alice decrypt this message? She begins by calculating a positive number
d such that de ≡ 1 mod φ(N). We sometimes call this d the decryption exponent.
This is possible because gcd(e, φ(N)) = 1, and is fast, because she can use the
extended version of Euclid’s algorithm to solve this linear congruence. To decrypt
xe mod N , the encrypted message she received from Bob, she raises this message to
the dth power mod N . Because de ≡ 1 mod φ(N), we may write de = 1 + kφ(N) for
some positive integer k. We then have

(xe)d = xde = x1+kφ(N) ≡ x(xφ(N))k mod N.

If gcd(x,N) = 1, then the Fermat-Euler theorem tells us that xφ(N) ≡ 1 mod N , so
the above expression is ≡ x mod N , which is Bob’s message. As a matter of fact,
one can check (HW assignment) that this is true even if gcd(x,N) 6= 1, so that Bob
does not need to worry about checking if gcd(x,N) = 1.

Example. Alice choose p = 2543, q = 3833. (One can check these are both prime.)
Then N = pq = 9747319, and φ(N) = 9740944. Clearly gcd(5, φ(N)) = 1, so Alice
chooses e = 5. She publishes (9747319, 5) as her public key. She then privately
calculates that d = 1948189 satisfies de ≡ 1 mod φ(N).

Bob decides he wants to send the message x = 2010 to Alice. Using a computer or
calculator, he finds that x5 ≡ 9220872 mod N , so he sends 9220872 to Alice. Alice
receives this message, and then using her own computer or calculator determines that
9220872d = 92208721948189 ≡ 2010 mod 9747319, thereby recovering Bob’s original
message.

This describes how Bob can send encrypted messages to Alice, and then how Alice
can decrypt the messages she receives. But for this to truly be a worthwhile cryp-
tosystem, it should be very difficult for adversaries to decrypt encrypted messages,
given public knowledge of the cryptosystem they are using and Alice’s public key.

For instance, let’s pretend that the adversary Eve has intercepted x′ mod N in
transit (in the example above, say she found 9220872). Eve knows that Bob’s message
is the number x which satisfies xe ≡ x′ mod N . How might she go about actually
determining what x is?

One approach is to try to figure out what Alice knows. After all, since N = pq, if
Eve is able to factor N , then she will have all the information she needs to determine
d and then decrypt any messages sent to Alice. So at the very least, if Eve can
factor N , she will be able to decrypt messages sent to Alice. Or, perhaps Eve can
try to figure out φ(N) (after all, one only needs to know e, φ(N) to determine d.)
A homework assignment asks you to show that if N = pq, knowledge of φ(N) is
equivalent to knowledge of p, q.

Perhaps it is possible, using some very clever technique, to recover x from xe mod N
knowing only x and N ; this is known as the RSA problem. Factorization is at least as
hard as RSA (since factorization solves RSA), but it is currently unknown whether
RSA is actually easier than factorization. Right now, any practical approach to
breaking RSA requires factoring N .

In the example above, it is easy to factor N with a computer, or even by hand
(in a few hours), since N is not particularly large. But this is only because p, q were
chosen to be small primes. In practice, p, q will be hundreds of digits long. The



MATH 25 CLASS 19 NOTES, NOV 2 2011 5

reason why RSA is an effective cryptosystem in modern times is due to the fact that
it is possible to find primes which are hundreds, if not thousands of digits long, using
modern primality testing methods, but it is very time-consuming to factor numbers
thousands of digits long if they have no small factors. As computing power grows,
larger numbers can be factored, but then we can just start using larger values of p, q,
which will be possible because increased computing power will allow us to generate
larger primes. In this way, so long as no breakthrough in the problem of factoring
integers or the RSA problem occurs, it is likely that RSA will remain secure even as
computers get more powerful.

We should point out that even though the theoretical description of RSA we have
given above indicates that RSA is secure assuming that factorization remains difficult,
in practice one needs to be careful with how RSA is implemented. In real life, there
are many situations for attackers to get more information on a cryptosystem than
just intercepted texts: for example, maybe the attacker has some prior knowledge of
Bob’s message contents. He can then try a brute force approach where he encrypts
all possible messages Bob sent and check which one matches the encrypted text. Or,
much more cleverly, perhaps the attacker has a way to measure the amount of time
Alice takes to decrypt messages. Based on a careful analysis of whatever algorithm
is used in Alice’s implementation of RSA, it might be possible to get information on
the decryption exponent d based on the run-time of her decryption procedures. (For
example, if d = 2, then the calculation will end much quicker than if d is hundreds
of digits long.) These potential flaws in RSA, and the modifications one can make to
overcome them, are topics for another class.


	1. An old cryptosystem: the Caesar cipher
	2. A modern cryptosystem: RSA

