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1. Solving polynomial congruences to prime power moduli

Right now we still have no better way to solve f(x) ≡ 0 mod p than brute force.
As a matter of fact there are better methods than this, but no methods are currently
known which are vastly better (like the case of the fast exponentiation mod n vs the
naive method of brute force multiplication). In this class, we will use brute force
to solve this congruence, except when f(x) is linear, for which we already have an
algorithm. The last part of this class will be dedicated to solving this congruence in
a systematic way when f(x) is quadratic.

Brute force on f(x) ≡ 0 mod p requires p different trials. What if we want to
solve f(x) ≡ 0 mod pe instead, for some e ≥ 1? Brute force will require pe different
trials, which is very large. However, there is a way to solve f(x) ≡ 0 mod pe without
this many trials. Before describing the general method, let’s look at some specific
examples.

Examples.

• Show that x3 + 2x + 1 ≡ 0 mod 54 has no solutions. For a problem like
this, perhaps we can get lucky and show that x3 + 2x + 1 ≡ 0 mod 5 has no
solutions. After all, if x3 + 2x + 1 ≡ 0 mod 54, then x3 + 2x + 1 ≡ 0 mod 5
must be true as well.

Indeed, a brute force check shows that x3 + 2x + 1 ≡ 0 mod 5 has no
solutions. Therefore, the original congruence has no solutions either. It is
worthwhile to note that it is possible for f(x) ≡ 0 mod p to have a solution,
but for f(x) ≡ 0 mod pe to have no solutions. We will shortly see how to
handle this situation.
• Find all solutions to f(x) = x3 + 2x2 + 2 ≡ 0 mod 27. We start by solving

the congruence x3 + 2x2 + 2 ≡ 0 mod 3. There are three cases to check and
we quickly find that the only solution is x ≡ 2 mod 3.

At this point, we look for solutions to f(x) ≡ 0 mod 9. Since we already
know that any solution satisfies x ≡ 2 mod 3, we must have x ≡ 2, 5, 8
mod 9. Again, checking each case shows that x ≡ 2 mod 9 is the only solution
mod 9. (Even though you might discover that f(2) ≡ 0 mod 9, you still need
to check 5, 8 mod 9, since in general it is possible for a single solution mod 3
to yield multiple solutions mod 9.)
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Finally, we look for solutions to f(x) ≡ 0 mod 27. We know x ≡ 2 mod 9
for any solution, so x ≡ 2, 11, 20 mod 27. One checks that x ≡ 20 mod 27 is
the only solution to this congruence. (Notice that if you do these calculations
by hand, they are starting to get a bit tedious, even when the modulus is as
low as 27!)

The main idea behind these two examples is that if we want to solve f(x) ≡ 0
mod pe, we can get a lot of information from trying to understand the easier-to-solve
congruences f(x) ≡ 0 mod pi, where 1 ≤ i < e. In particular, sometimes we can get
lucky and rule out solutions immediately by considering f(x) ≡ 0 mod p, and if we
find solutions, we can try to gradually ‘lift’ a solution mod pi to the larger modulus
pi+1, until we reach the modulus pe.

As a procedure to solve f(x) ≡ 0 mod pe, this works fine, but we might ask
whether there are general properties which are true about lifting solutions. For
instance, in the second example, we saw that each solution mod pi lifted to exactly
one solution mod pi+1. Is this always true? Or is it possible for a solution to lift
to more than one solution? If so, how many solutions mod pi+1 might there be?
And can we easily distinguish when each case occurs, without resorting to actual
trial-and-error?

Fortunately, there is a relatively simple criterion to determine when all these things
happen. Suppose we want to solve f(x) ≡ 0 mod pe, where f(x) is a polynomial
with integer coefficients. Furthermore, suppose we know that xi mod pi is a solution
to f(x) ≡ 0 mod pi.

The possible solutions mod pi+1 that appear as lifts of ai are given by xi + piki,
where 0 ≤ ki < p. (In the second example, we have a0 = 2, p = 3, i = 0, and then
possible solutions mod 32 are 2, 2+3·1, 2+3·2, for instance.) How might we determine
which of these candidate solutions are real solutions to f(x) ≡ 0 mod pi+1? We will
plug these candidate solutions into this congruence and see which ones actually solve
the equation!

Let f(x) =
∑n

j=0 ajx
j. Plugging in xi + piki in for x into f(x) yields

f(xi + piki) =
n∑

j=0

aj(xi + piki)
j.

On the surface, this looks like a horrible mess to expand each jth power. However,
recall that we are only interested in the value of this expression modulo pi+1. So, for
instance, if we expand (xi + piki)

2, we end up getting x2
i + 2pikixi + p2ik2

i , and the
last term disappears mod pi+1 since i + 1 ≤ 2i.

More generally, we see that when we expand (xi + piki)
j, any term in which piki is

raised to a second power or higher disappears when considered mod pi+1. With this
in mind, we find that

f(xi + piki) ≡
n∑

j=0

(ajx
j
i + ajjx

j−1
i piki) mod pi+1.

This doesn’t really look much friendlier, but notice that the first part of the sum is
just f(xi). The second part of the sum doesn’t look as simple, but a little bit of
thought shows that it is equal to pikif

′(xi). So altogether, we have
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f(xi + piki) ≡ f(xi) + f ′(xi)piki mod pi+1.

At this point, we use the fact that f(xi) ≡ 0 mod pi. Because this is so, we can
write f(xi) ≡ piqi mod pi, for some 0 ≤ qi < p.

Therefore, we want to solve the equation

piqi + f ′(xi)p
iki ≡ 0 mod pi+1.

Since pi divides every number in sight (both the terms in the sum and the modulus),
this is equivalent to solving

(1) qi + f ′(xi)ki ≡ 0 mod p.

Notice that something amazing happens: this is a linear equation in the single variable
ki! After all, qi, f

′(xi) are numbers which depend only on xi, f(x), and we wanted to
solve for ki, which will determine xi+1.

When does this linear equation have a unique solution? Remember that this has a
unique solution exactly when gcd(p, f ′(xi)) = 1, or, in other words, when p - f ′(xi).
(Notice that the fact that xi is only unique up to multiples of pi does not matter,
since f ′(xi) has the same value mod p even if we replace xi by xi + pik for some
integer k.) So if p - f ′(xi), then we can solve for ki, and then f(x) ≡ 0 mod pi+1 will
have exactly one solution which is lifted from xi.

What happens if p | f ′(xi)? In this case, Equation 1 reduces to

qi ≡ 0 mod p.

Well, either qi ≡ 0 mod p or not. If qi ≡ 0 mod p (which, given the way we’ve
defined qi to satisfy 0 ≤ qi < p, means that qi = 0), then this equation is always true,
regardless of the value of ki we choose. On the other hand, if qi 6≡ 0 mod p, then it
does not matter what value we choose for ki.

2. Hensel’s Lemma

Let’s summarize this result:

Theorem 1 (Hensel’s Lemma, Example 4.10 in the book). Let f(x) be a polynomial
with integral coefficients. Let p be a prime. Let xi mod pi be a solution to f(x) ≡ 0
mod pi. Then:

• If p - f ′(xi), then there is a unique xi+1 mod pi+1 satisfying xi+1 ≡ xi mod pi

(that is, xi+1 is a lift of xi) and f(xi+1) ≡ 0 mod pi+1. If we write xi+1 =
xi + piki and f(xi) = piqi, where 0 ≤ ki, qi < p, then ki is the unique solution
to qi + f ′(xi)ki ≡ 0 mod p.
• If p | f ′(xi) and pi+1 - f(xi) (in the terminology of the previous case, qi 6= 0),

then there are no xi+1 mod pi+1 which solve f(x) ≡ 0 mod pi+1 and satisfy
xi+1 ≡ xi mod pi. (In other words, no lifts of xi solve f(x) ≡ 0 mod pi+1.)
• If p | f ′(xi) and pi+1 | f(xi), then every xi+1 mod pi+1 which satisfies xi+1 ≡
xi mod pi is also a solution of f(x) ≡ 0 mod pi+1.

Examples.
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• Let’s go back to the example f(x) = x3 + 2x2 + 2 ≡ 0 mod 33. We saw that
f(2) ≡ 0 mod 3 (remember, we still only know the trial-and-error method
when solving f(x) ≡ 0 mod p), so x1 = 2 in our language. To determine
all lifts of x1 to solutions mod 9 using Hensel’s Lemma, first we calculate
f ′(x) = 3x2 + 4x. Therefore f ′(x1) = f ′(2) = 12 + 8 = 20, and evidently
3 - 20, so we are in the first case of Hensel’s Lemma.

To actually determine the lift, we also need to know the value of f(x1)
mod 9, not just mod 3. We calculate f(2) = 18 = 3 · 6. So this tells us
that q1 = 0, since 18 ≡ 0 mod 9, and 0 = 3 · 0. (Notice that had we chosen
x1 = −1 in all this, we still would have found that 3 - f ′(xi), but f(−1) = 3
would have yielded a value of q1 = 1. So the actual qi do depend on your
choice of representative for xi, but does not impact whether p | f ′(xi) or
not.) To determine k1, which in turn determines x2 = x1 + 31k1, we solve
q1 + f ′(x1)k1 ≡ 0 mod 3. Plugging in all the numbers we’ve calculated, this
becomes 0 + 2k1 ≡ 0 mod 3, which obviously has unique solution k1 ≡ 0
mod 3. Since we require 0 ≤ k1 < 3, this gives k1 = 0. Therefore the solution
x1 = 2 mod 3 uniquely lifts to the solution x2 = 2 mod 9 of f(x) ≡ 0
mod 9. You can use Hensel’s Lemma to lift this solution to a solution mod 27
as an exercise. You might also want to do the calculation of lifting −1 mod 3
to a solution mod 9; you will get the same result but as mentioned, the value
of q1, and hence k1, changes.
• To see an example of one of the latter two cases happening, consider the old

question of solutions to x2−1 ≡ 0 mod 8. We already solved this using brute
force, but let’s see what happens when we apply Hensel’s Lemma to it. First,
the congruence x2 ≡ 1 mod 2 clearly only has solution x1 ≡ 1 mod 2. Since
f(x) = x2 − 1, f ′(x) = 2x. However, notice that 2 | (2x) regardless of the
value of x. Therefore, either x1 ≡ 1 mod 2 lifts to p = 2 solutions mod 4, or
no solutions mod 4. To check which occurs (of course, we already know which
case occurs, but we want to check that Hensel’s Lemma works), we check the
value of f(x1) = f(1) = 0. Since 22 | 0, we are in the last case of Hensel’s
Lemma, which tells us that every lifting of 1 mod 2 to mod 4 (namely, 1, 3
mod 4) are also solutions to f(x) ≡ 0 mod 4. And then one can check the
same thing happens when checking for lifting of both 1, 3 mod 4 to mod 8,
which gives the solutions 1, 3, 5, 7 mod 8, which we already knew.
• Consider f(x) = 2x2 + 3x + 2 ≡ 0 mod 72. When we consider f(x) ≡ 0

mod 7, trial and error gives the unique solution x1 ≡ 1 mod 7. We now test
if we can lift this to any solutions mod 49. First, we compute f ′(x) = 4x+ 3.
In particular, 7 | f ′(1). Therefore, we need to check whether 49 | f(1). A
quick calculation shows that f(1) = 7, so 49 - 7. Hensel’s Lemma therefore
tells us that there is no lift of 1 mod 7 to a solution of f(x) ≡ 0 mod 72,
and therefore no solutions to this congruence in general.
• Consider f(x) = x2 + 3 ≡ 0 mod 7n, for any positive integer n. Does this

have any solutions? Notice that x1 = 2 solves f(x) ≡ 0 mod 7. We compute
f ′(x) = 2x, and f ′(x1) = 4. In particular, 7 - 4, so there is a unique lift of
x1 ≡ 2 mod 7 to mod 49 which solves f(x) ≡ 0 mod 49.

Instead of computing what this lift, say x2, actually is, let’s think about
whether we can lift this to a solution x3 mod 73 of f(x) ≡ 0 mod 73. We
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need to check whether 7 | f ′(x2) or not. While we don’t know what x2 is, we
do know that x2 ≡ 2 mod 7. Therefore, f ′(x2) ≡ f ′(2) = 4 mod 7, so we
can conclude that 7 - f ′(x2). Therefore x2 mod 72 lifts to a unique solution
x3 mod 73 of f(x) ≡ 0 mod 73.

This procedure clearly can continue indefinitely; a solution xn mod 7n sat-
isfies 7 - f ′(xn) because xn ≡ 2 mod 7, and therefore lifts to a solution xn+1

mod 7n+1 of f(x) ≡ 0 mod 7n+1.
So in the end, we get a sequence of solutions x1 = 2, x2, x3, . . ., where xi

solves f(x) ≡ 0 mod 7i. Furthermore, these solutions satisfy the ‘compati-
bility’ conditions xj ≡ xi mod 7i, if i ≤ j.
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