MATH 25 CLASS 20 NOTES, NOV 42011

Contents

1. Solving polynomial congruences to prime power moduli 1
2. Hensel's Lemma 3

1. Solving polynomial congruences to prime power moduli

Right now we still have no better way to solve $f(x) \equiv 0 \bmod p$ than brute force. As a matter of fact there are better methods than this, but no methods are currently known which are vastly better (like the case of the fast exponentiation $\bmod n$ vs the naive method of brute force multiplication). In this class, we will use brute force to solve this congruence, except when $f(x)$ is linear, for which we already have an algorithm. The last part of this class will be dedicated to solving this congruence in a systematic way when $f(x)$ is quadratic.

Brute force on $f(x) \equiv 0 \bmod p$ requires p different trials. What if we want to solve $f(x) \equiv 0 \bmod p^{e}$ instead, for some $e \geq 1$? Brute force will require p^{e} different trials, which is very large. However, there is a way to solve $f(x) \equiv 0 \bmod p^{e}$ without this many trials. Before describing the general method, let's look at some specific examples.

Examples.

- Show that $x^{3}+2 x+1 \equiv 0 \bmod 5^{4}$ has no solutions. For a problem like this, perhaps we can get lucky and show that $x^{3}+2 x+1 \equiv 0 \bmod 5$ has no solutions. After all, if $x^{3}+2 x+1 \equiv 0 \bmod 5^{4}$, then $x^{3}+2 x+1 \equiv 0 \bmod 5$ must be true as well.

Indeed, a brute force check shows that $x^{3}+2 x+1 \equiv 0 \bmod 5$ has no solutions. Therefore, the original congruence has no solutions either. It is worthwhile to note that it is possible for $f(x) \equiv 0 \bmod p$ to have a solution, but for $f(x) \equiv 0 \bmod p^{e}$ to have no solutions. We will shortly see how to handle this situation.

- Find all solutions to $f(x)=x^{3}+2 x^{2}+2 \equiv 0 \bmod 27$. We start by solving the congruence $x^{3}+2 x^{2}+2 \equiv 0 \bmod 3$. There are three cases to check and we quickly find that the only solution is $x \equiv 2 \bmod 3$.

At this point, we look for solutions to $f(x) \equiv 0 \bmod 9$. Since we already know that any solution satisfies $x \equiv 2 \bmod 3$, we must have $x \equiv 2,5,8$ $\bmod 9$. Again, checking each case shows that $x \equiv 2 \bmod 9$ is the only solution $\bmod 9$. (Even though you might discover that $f(2) \equiv 0 \bmod 9$, you still need to check $5,8 \bmod 9$, since in general it is possible for a single solution $\bmod 3$ to yield multiple solutions mod 9.)

Finally, we look for solutions to $f(x) \equiv 0 \bmod 27$. We know $x \equiv 2 \bmod 9$ for any solution, so $x \equiv 2,11,20 \bmod 27$. One checks that $x \equiv 20 \bmod 27$ is the only solution to this congruence. (Notice that if you do these calculations by hand, they are starting to get a bit tedious, even when the modulus is as low as 27!)
The main idea behind these two examples is that if we want to solve $f(x) \equiv 0$ $\bmod p^{e}$, we can get a lot of information from trying to understand the easier-to-solve congruences $f(x) \equiv 0 \bmod p^{i}$, where $1 \leq i<e$. In particular, sometimes we can get lucky and rule out solutions immediately by considering $f(x) \equiv 0 \bmod p$, and if we find solutions, we can try to gradually 'lift' a solution $\bmod p^{i}$ to the larger modulus p^{i+1}, until we reach the modulus p^{e}.

As a procedure to solve $f(x) \equiv 0 \bmod p^{e}$, this works fine, but we might ask whether there are general properties which are true about lifting solutions. For instance, in the second example, we saw that each solution mod p^{i} lifted to exactly one solution mod p^{i+1}. Is this always true? Or is it possible for a solution to lift to more than one solution? If so, how many solutions mod p^{i+1} might there be? And can we easily distinguish when each case occurs, without resorting to actual trial-and-error?

Fortunately, there is a relatively simple criterion to determine when all these things happen. Suppose we want to solve $f(x) \equiv 0 \bmod p^{e}$, where $f(x)$ is a polynomial with integer coefficients. Furthermore, suppose we know that $x_{i} \bmod p^{i}$ is a solution to $f(x) \equiv 0 \bmod p^{i}$.

The possible solutions mod p^{i+1} that appear as lifts of a_{i} are given by $x_{i}+p^{i} k_{i}$, where $0 \leq k_{i}<p$. (In the second example, we have $a_{0}=2, p=3, i=0$, and then possible solutions mod 3^{2} are $2,2+3 \cdot 1,2+3 \cdot 2$, for instance.) How might we determine which of these candidate solutions are real solutions to $f(x) \equiv 0 \bmod p^{i+1}$? We will plug these candidate solutions into this congruence and see which ones actually solve the equation!

Let $f(x)=\sum_{j=0}^{n} a_{j} x^{j}$. Plugging in $x_{i}+p^{i} k_{i}$ in for x into $f(x)$ yields

$$
f\left(x_{i}+p^{i} k_{i}\right)=\sum_{j=0}^{n} a_{j}\left(x_{i}+p^{i} k_{i}\right)^{j} .
$$

On the surface, this looks like a horrible mess to expand each j th power. However, recall that we are only interested in the value of this expression modulo p^{i+1}. So, for instance, if we expand $\left(x_{i}+p^{i} k_{i}\right)^{2}$, we end up getting $x_{i}^{2}+2 p^{i} k_{i} x_{i}+p^{2 i} k_{i}^{2}$, and the last term disappears mod p^{i+1} since $i+1 \leq 2 i$.

More generally, we see that when we expand $\left(x_{i}+p^{i} k_{i}\right)^{j}$, any term in which $p^{i} k_{i}$ is raised to a second power or higher disappears when considered mod p^{i+1}. With this in mind, we find that

$$
f\left(x_{i}+p^{i} k_{i}\right) \equiv \sum_{j=0}^{n}\left(a_{j} x_{i}^{j}+a_{j} j x_{i}^{j-1} p^{i} k_{i}\right) \quad \bmod p^{i+1}
$$

This doesn't really look much friendlier, but notice that the first part of the sum is just $f\left(x_{i}\right)$. The second part of the sum doesn't look as simple, but a little bit of thought shows that it is equal to $p_{i} k_{i} f^{\prime}\left(x_{i}\right)$. So altogether, we have

$$
f\left(x_{i}+p^{i} k_{i}\right) \equiv f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) p_{i} k_{i} \quad \bmod p^{i+1} .
$$

At this point, we use the fact that $f\left(x_{i}\right) \equiv 0 \bmod p^{i}$. Because this is so, we can write $f\left(x_{i}\right) \equiv p^{i} q_{i} \bmod p^{i}$, for some $0 \leq q_{i}<p$.

Therefore, we want to solve the equation

$$
p^{i} q_{i}+f^{\prime}\left(x_{i}\right) p^{i} k_{i} \equiv 0 \quad \bmod p^{i+1}
$$

Since p^{i} divides every number in sight (both the terms in the sum and the modulus), this is equivalent to solving

$$
\begin{equation*}
q_{i}+f^{\prime}\left(x_{i}\right) k_{i} \equiv 0 \quad \bmod p \tag{1}
\end{equation*}
$$

Notice that something amazing happens: this is a linear equation in the single variable k_{i} ! After all, $q_{i}, f^{\prime}\left(x_{i}\right)$ are numbers which depend only on $x_{i}, f(x)$, and we wanted to solve for k_{i}, which will determine x_{i+1}.

When does this linear equation have a unique solution? Remember that this has a unique solution exactly when $\operatorname{gcd}\left(p, f^{\prime}\left(x_{i}\right)\right)=1$, or, in other words, when $p \nmid f^{\prime}\left(x_{i}\right)$. (Notice that the fact that x_{i} is only unique up to multiples of p^{i} does not matter, since $f^{\prime}\left(x_{i}\right)$ has the same value $\bmod p$ even if we replace x_{i} by $x_{i}+p^{i} k$ for some integer k.) So if $p \nmid f^{\prime}\left(x_{i}\right)$, then we can solve for k_{i}, and then $f(x) \equiv 0 \bmod p^{i+1}$ will have exactly one solution which is lifted from x_{i}.

What happens if $p \mid f^{\prime}\left(x_{i}\right)$? In this case, Equation 1 reduces to

$$
q_{i} \equiv 0 \quad \bmod p
$$

Well, either $q_{i} \equiv 0 \bmod p$ or not. If $q_{i} \equiv 0 \bmod p($ which, given the way we've defined q_{i} to satisfy $0 \leq q_{i}<p$, means that $q_{i}=0$), then this equation is always true, regardless of the value of k_{i} we choose. On the other hand, if $q_{i} \not \equiv 0 \bmod p$, then it does not matter what value we choose for k_{i}.

2. Hensel's Lemma

Let's summarize this result:
Theorem 1 (Hensel's Lemma, Example 4.10 in the book). Let $f(x)$ be a polynomial with integral coefficients. Let p be a prime. Let $x_{i} \bmod p^{i}$ be a solution to $f(x) \equiv 0$ $\bmod p^{i}$. Then:

- If $p \nmid f^{\prime}\left(x_{i}\right)$, then there is a unique $x_{i+1} \bmod p^{i+1}$ satisfying $x_{i+1} \equiv x_{i} \bmod p^{i}$ (that is, x_{i+1} is a lift of x_{i}) and $f\left(x_{i+1}\right) \equiv 0 \bmod p^{i+1}$. If we write $x_{i+1}=$ $x_{i}+p^{i} k_{i}$ and $f\left(x_{i}\right)=p^{i} q_{i}$, where $0 \leq k_{i}, q_{i}<p$, then k_{i} is the unique solution to $q_{i}+f^{\prime}\left(x_{i}\right) k_{i} \equiv 0 \bmod p$.
- If $p \mid f^{\prime}\left(x_{i}\right)$ and $p^{i+1} \nmid f\left(x_{i}\right)$ (in the terminology of the previous case, $q_{i} \neq 0$), then there are no $x_{i+1} \bmod p^{i+1}$ which solve $f(x) \equiv 0 \bmod p^{i+1}$ and satisfy $x_{i+1} \equiv x_{i} \bmod p^{i}$. (In other words, no lifts of x_{i} solve $f(x) \equiv 0 \bmod p^{i+1}$.)
- If $p \mid f^{\prime}\left(x_{i}\right)$ and $p^{i+1} \mid f\left(x_{i}\right)$, then every $x_{i+1} \bmod p^{i+1}$ which satisfies $x_{i+1} \equiv$ $x_{i} \bmod p^{i}$ is also a solution of $f(x) \equiv 0 \bmod p^{i+1}$.

Examples.

- Let's go back to the example $f(x)=x^{3}+2 x^{2}+2 \equiv 0 \bmod 3^{3}$. We saw that $f(2) \equiv 0 \bmod 3$ (remember, we still only know the trial-and-error method when solving $f(x) \equiv 0 \bmod p$, so $x_{1}=2$ in our language. To determine all lifts of x_{1} to solutions mod 9 using Hensel's Lemma, first we calculate $f^{\prime}(x)=3 x^{2}+4 x$. Therefore $f^{\prime}\left(x_{1}\right)=f^{\prime}(2)=12+8=20$, and evidently $3 \nmid 20$, so we are in the first case of Hensel's Lemma.

To actually determine the lift, we also need to know the value of $f\left(x_{1}\right)$ $\bmod 9$, not just $\bmod 3$. We calculate $f(2)=18=3 \cdot 6$. So this tells us that $q_{1}=0$, since $18 \equiv 0 \bmod 9$, and $0=3 \cdot 0$. (Notice that had we chosen $x_{1}=-1$ in all this, we still would have found that $3 \nmid f^{\prime}\left(x_{i}\right)$, but $f(-1)=3$ would have yielded a value of $q_{1}=1$. So the actual q_{i} do depend on your choice of representative for x_{i}, but does not impact whether $p \mid f^{\prime}\left(x_{i}\right)$ or not.) To determine k_{1}, which in turn determines $x_{2}=x_{1}+3^{1} k_{1}$, we solve $q_{1}+f^{\prime}\left(x_{1}\right) k_{1} \equiv 0 \bmod 3$. Plugging in all the numbers we've calculated, this becomes $0+2 k_{1} \equiv 0 \bmod 3$, which obviously has unique solution $k_{1} \equiv 0$ $\bmod 3$. Since we require $0 \leq k_{1}<3$, this gives $k_{1}=0$. Therefore the solution $x_{1}=2 \bmod 3$ uniquely lifts to the solution $x_{2}=2 \bmod 9$ of $f(x) \equiv 0$ mod 9. You can use Hensel's Lemma to lift this solution to a solution mod 27 as an exercise. You might also want to do the calculation of lifting $-1 \bmod 3$ to a solution mod 9 ; you will get the same result but as mentioned, the value of q_{1}, and hence k_{1}, changes.

- To see an example of one of the latter two cases happening, consider the old question of solutions to $x^{2}-1 \equiv 0 \bmod 8$. We already solved this using brute force, but let's see what happens when we apply Hensel's Lemma to it. First, the congruence $x^{2} \equiv 1 \bmod 2$ clearly only has solution $x_{1} \equiv 1 \bmod 2$. Since $f(x)=x^{2}-1, f^{\prime}(x)=2 x$. However, notice that $2 \mid(2 x)$ regardless of the value of x. Therefore, either $x_{1} \equiv 1 \bmod 2$ lifts to $p=2$ solutions mod 4 , or no solutions mod 4 . To check which occurs (of course, we already know which case occurs, but we want to check that Hensel's Lemma works), we check the value of $f\left(x_{1}\right)=f(1)=0$. Since $2^{2} \mid 0$, we are in the last case of Hensel's Lemma, which tells us that every lifting of $1 \bmod 2$ to mod 4 (namely, 1,3 $\bmod 4)$ are also solutions to $f(x) \equiv 0 \bmod 4$. And then one can check the same thing happens when checking for lifting of both $1,3 \bmod 4$ to $\bmod 8$, which gives the solutions $1,3,5,7 \bmod 8$, which we already knew.
- Consider $f(x)=2 x^{2}+3 x+2 \equiv 0 \bmod 7^{2}$. When we consider $f(x) \equiv 0$ $\bmod 7$, trial and error gives the unique solution $x_{1} \equiv 1 \bmod 7$. We now test if we can lift this to any solutions mod 49. First, we compute $f^{\prime}(x)=4 x+3$. In particular, $7 \mid f^{\prime}(1)$. Therefore, we need to check whether $49 \mid f(1)$. A quick calculation shows that $f(1)=7$, so $49 \nmid 7$. Hensel's Lemma therefore tells us that there is no lift of $1 \bmod 7$ to a solution of $f(x) \equiv 0 \bmod 7^{2}$, and therefore no solutions to this congruence in general.
- Consider $f(x)=x^{2}+3 \equiv 0 \bmod 7^{n}$, for any positive integer n. Does this have any solutions? Notice that $x_{1}=2$ solves $f(x) \equiv 0 \bmod 7$. We compute $f^{\prime}(x)=2 x$, and $f^{\prime}\left(x_{1}\right)=4$. In particular, $7 \nmid 4$, so there is a unique lift of $x_{1} \equiv 2 \bmod 7$ to $\bmod 49$ which solves $f(x) \equiv 0 \bmod 49$.

Instead of computing what this lift, say x_{2}, actually is, let's think about whether we can lift this to a solution $x_{3} \bmod 7^{3}$ of $f(x) \equiv 0 \bmod 7^{3}$. We
need to check whether $7 \mid f^{\prime}\left(x_{2}\right)$ or not. While we don't know what x_{2} is, we do know that $x_{2} \equiv 2 \bmod 7$. Therefore, $f^{\prime}\left(x_{2}\right) \equiv f^{\prime}(2)=4 \bmod 7$, so we can conclude that $7 \nmid f^{\prime}\left(x_{2}\right)$. Therefore $x_{2} \bmod 7^{2}$ lifts to a unique solution $x_{3} \bmod 7^{3}$ of $f(x) \equiv 0 \bmod 7^{3}$.

This procedure clearly can continue indefinitely; a solution $x_{n} \bmod 7^{n}$ satisfies $7 \nmid f^{\prime}\left(x_{n}\right)$ because $x_{n} \equiv 2 \bmod 7$, and therefore lifts to a solution x_{n+1} $\bmod 7^{n+1}$ of $f(x) \equiv 0 \bmod 7^{n+1}$.

So in the end, we get a sequence of solutions $x_{1}=2, x_{2}, x_{3}, \ldots$, where x_{i} solves $f(x) \equiv 0 \bmod 7^{i}$. Furthermore, these solutions satisfy the 'compatibility' conditions $x_{j} \equiv x_{i} \bmod 7^{i}$, if $i \leq j$.

