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1. Groups: definition

Even though we have been learning number theory without using any other parts of
mathematics, in secret we have been doing a lot of abstract algebra. We make a brief
digression to give some definitions from algebra which will be useful in describing
what we will be doing next.

Consider a set G with a binary operation · : G × G → G satisfying the following
properties:

• The operation · is associative: given any g1, g2, g3 ∈ G, (g1g2)g3 = g1(g2g3).
• The operation · has an identity: there exists a (unique) element e ∈ G such

that g · e = e · g = g for all g ∈ G.
• Every element in G has an inverse: for all g ∈ G, there exists g−1 ∈ G such

that gg−1 = g−1g = e.

Any set G with a binary operation · which satisfies the above three properties is
called a group, and denoted (G, ·), although frequently we will just write G, with the
understanding that · is the binary operation defined on G.

There is a familiar property which is only satisfied by some groups: we say that G
is abelian if g1g2 = g2g1 for all g1, g2 ∈ G.

Examples.

• Familiar groups include (Z,+), (Q,+), (R,+), (C,+).
• Familiar sets with operations which are not groups are (N,+) and (Z, ·).

Indeed, notice that N has no additive identity, while Z has a multiplicative
identity (namely, 1), but most of its elements have no multiplicative inverses;
for instance, 2 has no multiplicative inverse in Z, since 2x = 1 has no solutions
in integers.
• Notice that (Q, ·) is not a group, because the element 0 has no multiplicative

inverse. However, removing this element does give a group, and we write Q∗
for the group of nonzero rationals under multiplication. Similarly, R∗,C∗ are
groups.
• Recall that Z/nZ is the set of congruences classes mod n. Under addition (of

congruence classes), this also forms a group.
• Every example we have listed above is an abelian group. There are many

groups of interest which are non-abelian (symmetry groups, permutation
1
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groups, matrix groups, for instance) which are important in mathematics
and physics, but in this class we will not have to worry about these. The fact
that we will only be interested in abelian groups reduces a lot of potential
complications.
• (Z/nZ, ·) (multiplication of congruence classes mod n) is not a group, because

certain elements (such as 0 mod n) have no multiplicative inverse. We saw
that (Q, ·) was not a group, but removing the number 0 made it a group.
Which elements do we have to remove from Z/nZ to obtain a group under
multiplication?

In other words, we want to determine which a mod n have multiplicative
inverses. Recall that we have already answered this question: precisely when a
satisfies gcd(a, n) = 1. We write (Z/nZ)∗, or what the textbook writes as Un,
for the set of a mod n with gcd(a, n) = 1 under multiplication of congruence
classes. One can check that this actually is a group; in particular, you can
check that this set is closed under multiplication. This is sometimes called
the unit group mod n.
• When n = p is prime, the unit group Up consists of 1 mod p, . . . , (p−1) mod p,

and has size p− 1.

2. Subgroups

Suppose we have a group G (not necessarily abelian, though you can assume this
if you want). A subset of H is called a subgroup of G if (H, ·) is itself a group, where
· is the operation H inherits from G. In practice, if you want to check that H is a
subgroup, there are three things to check: first, you need to check that h1h2 ∈ H is
true for all h1, h2 ∈ H. This property is sometimes known as closure; notice that this
does not appear in the definition of a group because it is built into the fact that the
binary operation · maps G × G to G. You also need to check that e ∈ H, and that
every element in H has an inverse. Notice that you already know · is associative on
H because it is so on G.

Example. Consider the group (Z,+). We claim the set of even numbers is actually
a subgroup of Z. Indeed, notice that the sum of any two even numbers is still even,
so closure is satisfied. The additive identity 0 is itself an even number, and finally,
the additive inverse of an even number x is −x, which is still even.

Contrast this to the set of odd numbers. This is not a subgroup of Z, because it is
not closed and has no additive identity (although it is closed under additive inverses).

More generally, one can show that every subgroup of (Z,+) has the form nZ for
some integer n, where nZ denotes the set of all integer multiples of n. A proof of this
basically boils down to using Euclidean division!

Let G be an arbitrary group (not necessarily abelian), and let g ∈ G be some
element of G. Then the set of all powers, both positive, negative, as well as zero, of
G is a subgroup of G, and is denoted 〈g〉. Indeed, notice that g0 = e, so the identity
is contained in 〈g〉. This set is also closed, since gn1gn2 = gn1+n2 . Finally, given any
gn ∈ 〈g〉, we also have g−n ∈ 〈g〉, and g−n · gn = e, so 〈g〉 is closed under inverses as
well. We call 〈g〉 the cyclic (sub)group generated by g. Any group G which has the
form 〈g〉 for some G is called a cyclic group.
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Examples.

• Notice that cyclic groups can be either finite or infinite. Indeed, (Z,+) is a
cyclic group, being generated by the element 1 (or the element −1). On the
other hand, Z/nZ is also cyclic, being generated by 1 mod n, but is of finite
size.
• In contrast to (Z,+), groups like (Q,+), (R,+), (C,+) are not cyclic. For

instance, given any x ∈ Q, there is no way 〈x〉 = Q, because 〈x〉 consists of
integer multiples of x, and so x/2 6∈ 〈x〉, unless x = 0, but then 〈x〉 = 〈0〉
consists of only one element.
• Un may or may not be cyclic, depending on the value of n. Indeed, the main

objective of the next week is to determine when Un is cyclic. For now, consider
the two examples U5, U8. Notice that U5 is cyclic, because 2 mod 5 generates
U5: its powers are 2 mod 5, 4 mod 5, 8 ≡ 3 mod 5, 16 ≡ 1 mod 5. On the other
hand, U8 is not cyclic: it consists of 1 mod 8, 3 mod 8, 5 mod 8, 7 mod 8, but
the squares of these elements are all ≡ 1 mod 8, and so multiplying a mod 8
(a odd) repeatedly by itself only gives the two elements a mod 8, 1 mod 8.

The order of an element g ∈ G is defined as the smallest positive integer d such
that gd = e. If no such integer exists, then we say that g has infinite order. If
you remember the definition of the order of a class a mod p given a few homework
assignments ago, this new definition is compatible with the old homework definition.

Examples.

• In (Z,+), 0 has order 1, while every other element has infinite order.
• In Z/nZ, 1 mod n has order n. More generally, a mod n has order equal to
n/(gcd(a, n)). You will show this on next week’s homework assignment.
• In Un, 1 mod n has order 1. Be sure that the binary operation associated to a

group is clear when you start talking about orders or other properties of the
group.
• If an element g ∈ G has order d < ∞, then 〈g〉 has size d. Indeed, if g has

order d, then the d elements e, g1, . . . , gd−1 are all not equal to e except for e
itself. We claim that these are all distinct. If gi = gj, then gi−j = gj−i = e.
But at least one of i − j, j − i ≥ 0, and these are both < d, so this is only
possible if i = j. Finally, any gn is equal to one of the gi in our list. Indeed,
divide n with remainder by d to get n = qd+ r, for some q, 0 ≤ r < d. Then
gn = gqd+r = gqdgr = eqgr = gr.
• Let’s list the orders of the various elements in U5. First, U5 has 4 elements:

1 mod 5, 2 mod 5, 3 mod 5, 4 mod 5. Clearly 1 mod 5 has order 1, being the
multiplicative identity. 2 mod 5 and 3 mod 5 both have order 4, since their
powers are 4 mod 5, 8 mod 5, 16 ≡ 1 mod 5 and 3 mod 5, 9 mod 5, 27 mod 5,
and 81 ≡ 1 mod 5 respectively. Finally, 4 mod 5 has order 2, since 42 = 16 ≡
1 mod 5.

The following theorem is of fundamental importance in elementary group theory.
Recall that |G| refers to the number of elements in G; when G is a group |G| equals
the number of elements in the set underlying that group.
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Theorem 1 (Lagrange’s Theorem). Let G be a finite group, and let H be a subgroup
of G. Then |H| | |G|.

We will not prove the theorem, although it is not hard, because its proof more
properly lies in algebra than number theory. However, this theorem makes the proofs
of various facts and theorems we have seen in this class trivial:

Examples.

• Consider the element a mod p in the multiplicative group Up. We claim that
the order of this element divides p− 1; ie, if d is the smallest positive integer
such that ad ≡ 1 mod p, then d | p−1. The cyclic group generated by a mod p
has size d (see the previous examples), and is a subgroup of Up. As Up has size
p− 1, this implies that d | (p− 1). As a matter of fact, notice that this proves
Fermat’s Little Theorem as well, because if ad ≡ 1 mod p and d | (p−1), then
ap−1 ≡ 1 mod p.
• Actually, Lagrange’s Theorem instantly proves the Fermat-Euler theorem.

We know that Un has φ(n) elements. Given any a mod n with gcd(a, n) = 1,
the cyclic group generated by a mod n has order d, for some d. In particular,
ad ≡ 1 mod n. On the other hand, Lagrange’s Theorem says that d | φ(n), so
aφ(n) ≡ 1 mod n as well.

3. Isomorphisms

Consider the group U3. This consists of the two elements 1 mod 3, 2 mod 3, and
22 ≡ 1 mod 3. On the other hand, consider the group Z/2Z. This consists of two
elements, 0 mod 2, 1 mod 2, and 1 + 1 ≡ 0 mod 2. In both cases, we have groups
consisting of two elements, one of which is the identity, and the other which when
added/multiplied by itself gave the identity. From the standpoint of their group
structure, these groups seem identical. The names and operations look slightly dif-
ferent, but from the perspective of the relationship of the elements in each group to
each other under their respective group operations, the groups are indistinguishable.
We want to give this property a name.

Two groups G and G′ are called isomorphic if there exists a bijective function
f : G→ G′ such that f(g1g2) = f(g1)f(g2) for all g1, g2 ∈ G. We call any such f an
isomorphism of G with G′. Notice that the multiplication on the left hand side takes
place in G, while the multiplication on the right hand side takes place in G′. (Recall
that a bijection f : G→ G′ is a function for which given any g′ ∈ G, there is exactly
element g ∈ G such that f(g) = g′.)

From the standpoint of group theory, isomorphic groups are indistinguishable.
While we might think of U3,Z/2Z as being different, they are only so by virtue of
the fact that we label their elements differently and use different group operations
on them. But the actual relationships of the elements to each other under their
respective group operations are identical.

Examples.

• We claim U5 is isomorphic to Z/4Z. Indeed, consider the map which sends
2n mod 5 to n mod 4. First, this map is well-defined: if 2n ≡ 2m mod 5,
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then 2n−m ≡ 1 mod 5, and because 2 mod 5 has order 4, this implies that
4 | (n−m), or equivalently that n ≡ m mod 4.

Next, this map is a bijection. This is clear because the four elements
2 mod 5, 4 mod 5, 8 ≡ 3 mod 5, 16 ≡ 1 mod 5 are mapped to 1 mod 4, 2 mod
4, 3 mod 4, 0 mod 4. Finally, 2n2m ≡ 2n+m mod 5 is mapped to (n + m) mod
4 = (n mod 4) + (m mod 4), so this map is an isomorphism.
• More generally, we claim that any cyclic group 〈g〉 is isomorphic to either
Z/dZ, if 〈g〉 has order d, or (Z,+).

Indeed, if 〈g〉 has order d, then one checks that the map gn 7→ n mod d
is an isomorphism, while if 〈g〉 has infinite order, one checks that the map
gn 7→ n is an isomorphism.
• If G,G′ are two groups, let G × G′ be the group whose underlying set is the

set of all ordered pairs (g, g′) with g ∈ G, g′ ∈ G′, and multiplication given by
(g1, g

′
1)(g2, g

′
2) = (g1g

′
1, g2g

′
2). One can check that this is indeed a group.

We claim that Z/2Z×Z/3Z is isomorphic to Z/6Z. One could write down
an explicit isomorphism, but we will instead use the Chinese Remainder The-
orem. Given any (a mod 2, b mod 3) ∈ Z/2Z× Z/3Z, we know there exists a
unique c mod 6 such that c ≡ a mod 2, c ≡ b mod 3, by the CRT. We claim
that the map (a mod 2, b mod 3) 7→ c mod 6 given by the CRT is an isomor-
phism. First, the CRT tells us that this map not only exists but is a bijection.
To check that it is an isomorphism, we need only check that it preserves group
operation.

Suppose (a mod 2, b mod 3) maps to c mod 6, while (a′ mod 2, b′ mod 3)
maps to c′ mod 6. Then (c+c′) ≡ (a+a′) mod 2, and (c+c′) ≡ (b+b′) mod 3,
so (a+ a′ mod 2, b+ b′ mod 3) maps to c+ c′ mod 6.

As you probably have noticed, there was nothing in this example which used
anything special about the numbers 2, 3 other than the fact that we were able
to apply the Chinese Remainder Theorem to mod2,mod3. So this example
really shows that if m,n are relatively prime numbers, then Z/nZ×Z/mZ is
isomorphic to Z/nmZ.
• If f : G → G′ is an isomorphism, then g, f(g) have the same order. Indeed,
gd = e if and only if f(gd) = f(g)d = f(e) = e′ (one checks that f(e) = e′).
Therefore the smallest d which makes gd = e true is also the smallest d which
makes f(g)d = e′ true. A consequence of this fact is that isomorphic groups
have the same number of elements of any given order. (The converse, however,
is not true: it is possible for groups to have the same number of elements of
each order and not be isomorphic.)

In particular, this provides a method for determining when two groups are
not isomorphic. For example, we can show that Z/pZ×Z/pZ is not isomorphic
to Z/p2Z, for any prime p. Indeed, notice the latter group has an element
(actually, many elements) of order p2, but the former has none: one easily
sees that p(a mod p, b mod p) = (ap mod p, bp mod p) = (0 mod p, 0 mod p),
so that every element of Z/pZ×Z/pZ has order at most p, and therefore not
p2. As a consequence, Z/pZ×Z/pZ is not cyclic, because this group has order
p2 but is not isomorphic to Z/p2Z.
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That was a lot of group theory in a short amount of time! Actually, it probably
is not necessary to remember everything we talked about today, but we will use the
language of groups a little for the remainder of the class, so knowing what a subgroup
is, what a cyclic group is, and what the order of an element is.

The primary question we want to answer in the next week or two is determining
when Un is cyclic, and if so, how to find generators for this group, and how knowing
generators helps us solve congruences. Based on today’s brief tour of algebra, it is
probably clear that algebra and number theory are quite close to each other.
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