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1. Testing for primitive roots

The central question we want to answer right now is the following: when is Un
cyclic? If Un is cyclic, we call any g mod n (which we might just write as g if the n
is clear) which generates Un a primitive root mod n. In particular, this means that
〈g〉 has the same size as Un; in other words, the order of g is φ(n).

A question which immediately presents itself is the question of how you might
actually determine whether a given g mod n is indeed primitive. One way is to
directly verify that g has order φ(n), by calculating g, g2, g3, . . . , gφ(n), and checking
that none of the elements equals 1 mod n except the last. However, the following
proposition shows that you actually only need to check a subset of powers of g to
determine whether a number is a primitive root:

Proposition 1 (Lemma 6.4). Let n be any positive integer. Then a mod n is a
primitive root mod n if and only if aφ(n)/q 6≡ 1 mod n for all primes q | φ(n).

Proof. If a mod n is a primitive root, then aφ(n)/q 6≡ 1 mod n is clear, because
φ(n)/q < φ(n), so that φ(n) is the smallest positive power of a which is ≡ 1 mod n.
For the converse direction, suppose that a mod n is not a primitive root. Suppose
a mod n has order d. Then d | φ(n), d 6= φ(n). In particular, there is some prime
q which divides φ(n)/d. This prime also divides φ(n). On the other hand, since
q | φ(n)/d, we also have d | φ(n)/q. Since ad ≡ 1 mod n, this implies aφ(n)/q ≡ 1
mod n as well.

�

Examples.

• Show that 2 is not a primitive root mod 17, but 3 is. First, n = 17 is prime,
so φ(n) = 16. Therefore a is a primitive root mod 17 if a has order 16 in U17.
One calculates that 24 = 16 ≡ −1 mod 17, so 28 ≡ 1 mod 17, so 2 is not a
primitive root mod 17.

The only prime dividing φ(17) = 16 is 2, so to check that 3 is a primitive
root it suffices to check that 38 6≡ 1 mod 8. We do this via three squarings:
32 ≡ 9 mod 17, 34 ≡ 13 ≡ −4 mod 17, 38 ≡ (−4)2 ≡ 16 mod 17. So 3 is
indeed a primitive root mod 17.
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• Show that 2 is a primitive root mod 101. First, we check that 101 is prime.
Therefore φ(101) = 100. The only primes dividing 100 are 2, 5, so to check
that 2 is a primitive root mod 101 it suffices to check that 220 6≡ 1 mod 101, 250 6≡
1 mod 101. One can calculate these, say using fast exponentiation, or any
other method you like, and check that 220 ≡ 95 mod 101, 250 ≡ 100 mod 101.
Therefore, 2 is a primitive root mod 101. In both this example and the pre-
vious example, notice that we save a substantial amount of work in using the
above proposition.

There are still many difficult, elementary, unsolved problems about primitive roots.
For example,

• (Artin’s Conjecture) Suppose a is an integer not equal to −1 or a square.
Then a is a primitive root mod p for infinitely many primes p.

Why the restriction on a? Notice that −1 is almost never a primitive root
mod p, because it has order 2. Furthermore, squares cannot be primitive roots
mod p for p > 3, because they have order φ(p)/2 = (p− 1)/2.

The partial progress towards Artin’s Conjecture is quite curious. For exam-
ple, it is proven under the assumption of the Generalized Riemann Hypothesis.
Unconditionally, it has been proven for infinitely many a. As a matter of fact,
statements like ‘Artin’s conjecture is true for one of a = 3, 5, 7’ have been
proven, but none of the methods of proof are actually able to identify one
particular a for which Artin’s conjecture is true.
• (Smallest positive primitive root mod p) Consider the integers 1, 2, . . . , p.

What is the size of the smallest primitive root mod p? Assuming the GRH,
it has been shown that the smallest primitive root is of size O(log6 p). Un-
conditionally, we only know that the smallest primitive root is at most a size
power of p; more accurately, we know a bound of O(p1/4+ε), for any ε > 0.

2. Up is cyclic

We now show that Up is cyclic, when p is prime; ie, that there exist primitive roots
mod p. The proof basically takes two steps. The first is the following seemingly
unrelated result:

Proposition 2. Let n be a positive integer. Then∑
d|n

φ(d) = n,

where the summation runs over all positive divisors of n, including 1 and n.

Proof. We will group up all the numbers from 1, 2, . . . , n into various sets depending
on their gcd with n. Let Sd be the subset of 1, 2, . . . , n which consists of all the
integers whose gcd with n is exactly equal to n/d. In set theoretic notation, Sd =
{a | 1 ≤ a ≤ n, gcd(a, n) = n/d}.

The first claim is that the various sets Sd, as d ranges over divisors of n, partition
1, 2, . . . , n. First, notice every a, 1 ≤ a ≤ n, is a member of some Sd with d | n,
since gcd(a, n) | n. Furthermore, all these sets are disjoint, since gcd(a, n) is a fixed
number, so that a can only belong to Sgcd(a,n).

http://en.wikipedia.org/wiki/Artin's_conjecture_on_primitive_roots
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This means that the sum of the sizes of Sd is equal to the size of the set {1, 2, . . . , n},
which clearly is n. Therefore, to prove the proposition it is enough to show that each
Sd has size φ(d).

A number a is an element of Sd if and only if 1 ≤ a ≤ n and gcd(a, n) = n/d.
This in turn is equivalent to there being an a′ such that a = (n/d)a′, 1 ≤ a′ ≤ d, and
gcd(a′, d) = 1. The first two conditions are fairly clear; for the last, recall that if d is
a common divisor of a, b, then gcd(a/d, b/d) = gcd(a, b)/d. How many choices of a′

are there? Exactly φ(d). Therefore, Sd has size φ(d) as claimed. �

Example. As an illustration of the idea of the proof, let n = 12. Then S12 consists
of the numbers from 1 to 12 which have gcd 12/12 = 1 with n; we quickly see that
S12 = {1, 5, 7, 11}. Similarly, S6 consists of those numbers from 1 to 12 which have
gcd 12/6 = 2 with n = 12. One sees that S6 = {2, 10}. For d = 4, 3, 2, 1, one checks
that S4 = {3, 9}, S3 = {4, 8}, S2 = {6}, S1 = {12}. You can quickly check that every
number from 1 to 12 lies in exactly one of these sets, and that the size of Sd is φ(d).

The following lemma gives some idea why the previous proposition will be helpful:

Lemma 1. Let g have order d in a group G. Then exactly φ(d) of g1, g2, . . . , gd have
order d.

Proof. Recall that 〈g〉 is isomorphic to Z/dZ, so to count the number of gi with order
d, it suffices to count the number of elements of (Z/dZ,+) of order d (to be proven
next). The order of a mod d is d/ gcd(a, d), so the number of elements of (Z/dZ,+)
with order exactly d is the number of elements relatively prime to d; this is φ(d). �

Lemma 2. Let a mod d ∈ Z/dZ. Then a mod d has order d/ gcd(a, d).

Proof. The order of a mod d is the smallest positive integer k such that ak ≡ 0
mod d; ie, d | ak. The fact that this k = gcd(a, d) has been used at several places
already; for instance, in the homework assignment concerning lattice points. We give
one possible short proof here:

Suppose pe||d; ie, pe is some prime power appearing in the factorization of d. Then
we need to choose k in such a way so that pe | ak; furthermore, we want to choose k
to be as small as possible. Suppose pf ||a; then the power of p that divides k should
be p0 if f ≥ e, and pe−f if f < e. However, notice that the power of p appearing in
d/ gcd(a, d) is pe−min(e,f), which is exactly the same as the two powers described. �

Example. Recall we computed that 28 ≡ 1 mod 17, and that 24 ≡ −1 mod 17,
so that 2 mod 17 has order 8. Then four of the classes 21, 22, . . . , 28 mod 17 have
order 8 as well; as a matter of fact, the isomorphism in the proof above tells us that
21, 23, 25, 27 are the powers of 2 which have order 8 mod 17.

Theorem 1 (Theorem 6.5). Let p be a prime, and let d | (p−1) be a positive integer.
Then there are exactly φ(d) elements of Up with order d.

Proof. Let Sd be the set of elements of Up with order exactly d, and let nd = |Sd|.
First, notice that the sets Sd, as d ranges across divisors of p − 1, partition Up.
Indeed, every element of Up belongs to some Sd, because each element has an order
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d which divides p − 1, and belongs to exactly one Sd, since an element cannot have
two different orders. This means that

∑
d|(p−1) nd = p− 1.

On the other hand, we will show that nd ≤ φ(d). If there are no elements of
order d, then this inequality is definitely true. If there is an element of order d, say g,
consider the d distinct elements g, g2, . . . , gd. These are all solutions to the polynomial
congruence xd ≡ 1 mod p. On the other hand, by a theorem proven a few weeks
ago, this polynomial congruence has at most d solutions. Therefore g, g2, . . . , gd are
all the solutions of xd ≡ 1 mod p. In particular, any element of Up which has order
d appears in the list g, g2, . . . , gd. On the other hand, the previous lemma tells us
that exactly φ(d) elements in this list have order d. In this case, nd = φ(d), so for all
d | (p− 1), we have nd ≤ φ(d).

This implies the inequality ∑
d|(p−1)

nd ≤
∑

d|(p−1)

φ(d).

On the other hand, notice that both the left hand side and the right hand side are
equal to p− 1. Therefore, this inequality is an equality. The only way this is possible
is if nd = φ(d) for all d | (p− 1), as desired. �

A clear consequence of this is that Up is cyclic, since there is not just one, but
φ(p− 1) ≥ 1 elements of order p− 1 in Up.

The next step, which we will look at next class, is to extend this analysis to Upe ,
for general e ≥ 1.
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