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1. TESTING FOR PRIMITIVE ROOTS

The central question we want to answer right now is the following: when is U,
cyclie? If U, is cyclic, we call any ¢ mod n (which we might just write as g if the n
is clear) which generates U,, a primitive root mod n. In particular, this means that
(g9) has the same size as U,; in other words, the order of g is ¢(n).

A question which immediately presents itself is the question of how you might
actually determine whether a given ¢ mod n is indeed primitive. One way is to
directly verify that g has order ¢(n), by calculating g, g% ¢°, ..., g?™, and checking
that none of the elements equals 1 mod n except the last. However, the following
proposition shows that you actually only need to check a subset of powers of g to
determine whether a number is a primitive root:

Proposition 1 (Lemma 6.4). Let n be any positive integer. Then a mod n is a
primitive root mod n if and only if a®™/? £ 1 mod n for all primes q | ¢(n).

Proof. If @ mod n is a primitive root, then a®™/9 2 1 mod n is clear, because
#(n)/q < ¢(n), so that ¢(n) is the smallest positive power of a which is =1 mod n.
For the converse direction, suppose that a mod n is not a primitive root. Suppose
a mod n has order d. Then d | ¢(n),d # ¢(n). In particular, there is some prime
g which divides ¢(n)/d. This prime also divides ¢(n). On the other hand, since
q | #(n)/d, we also have d | ¢(n)/q. Since a® = 1 mod n, this implies a®™/? = 1
mod n as well.

O

Examples.

e Show that 2 is not a primitive root mod 17, but 3 is. First, n = 17 is prime,
so ¢(n) = 16. Therefore a is a primitive root mod 17 if a has order 16 in U5.
One calculates that 2* = 16 = —1 mod 17, s0 28 =1 mod 17, so 2 is not a
primitive root mod 17.

The only prime dividing ¢(17) = 16 is 2, so to check that 3 is a primitive
root it suffices to check that 3% £ 1 mod 8. We do this via three squarings:
32 =9 mod 17,3* = 13 = —4 mod 17,3% = (—4)> = 16 mod 17. So 3 is
indeed a primitive root mod 17.
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e Show that 2 is a primitive root mod 101. First, we check that 101 is prime.
Therefore ¢(101) = 100. The only primes dividing 100 are 2,5, so to check
that 2 is a primitive root mod 101 it suffices to check that 22° £ 1 mod 101,2%° #
1 mod 101. One can calculate these, say using fast exponentiation, or any
other method you like, and check that 22° = 95 mod 101,2°° = 100 mod 101.
Therefore, 2 is a primitive root mod 101. In both this example and the pre-
vious example, notice that we save a substantial amount of work in using the
above proposition.

There are still many difficult, elementary, unsolved problems about primitive roots.
For example,

e (Artin’s Conjecture) Suppose a is an integer not equal to —1 or a square.
Then a is a primitive root mod p for infinitely many primes p.

Why the restriction on a? Notice that —1 is almost never a primitive root
mod p, because it has order 2. Furthermore, squares cannot be primitive roots
mod p for p > 3, because they have order ¢(p)/2 = (p —1)/2.

The partial progress towards Artin’s Conjecture is quite curious. For exam-
ple, it is proven under the assumption of the Generalized Riemann Hypothesis.
Unconditionally, it has been proven for infinitely many a. As a matter of fact,
statements like ‘Artin’s conjecture is true for one of a = 3,5,7 have been
proven, but none of the methods of proof are actually able to identify one
particular a for which Artin’s conjecture is true.

e (Smallest positive primitive root mod p) Consider the integers 1,2,...,p.
What is the size of the smallest primitive root mod p? Assuming the GRH,
it has been shown that the smallest primitive root is of size O(log®p). Un-
conditionally, we only know that the smallest primitive root is at most a size
power of p; more accurately, we know a bound of O(p'/4*¢), for any ¢ > 0.

2. U, 18 CYCLIC

We now show that U, is cyclic, when p is prime; ie, that there exist primitive roots
mod p. The proof basically takes two steps. The first is the following seemingly
unrelated result:

Proposition 2. Let n be a positive integer. Then

> 6(d) =n,

din

where the summation runs over all positive divisors of n, including 1 and n.

Proof. We will group up all the numbers from 1,2, ..., n into various sets depending
on their ged with n. Let S; be the subset of 1,2,...,n which consists of all the
integers whose ged with n is exactly equal to n/d. In set theoretic notation, Sy =
{a]1 <a<mn,ged(a,n) =n/d}.

The first claim is that the various sets Sy, as d ranges over divisors of n, partition
1,2,...,n. First, notice every a,1 < a < n, is a member of some S; with d | n,
since ged(a,n) | n. Furthermore, all these sets are disjoint, since ged(a,n) is a fixed
number, so that a can only belong to Sgcq(a,n)-
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This means that the sum of the sizes of Sy is equal to the size of the set {1,2,...,n},
which clearly is n. Therefore, to prove the proposition it is enough to show that each
Sq has size ¢(d).

A number a is an element of Sy if and only if 1 < a < n and ged(a,n) = n/d.
This in turn is equivalent to there being an a’ such that a = (n/d)a’,1 < a’ < d, and
ged(a’,d) = 1. The first two conditions are fairly clear; for the last, recall that if d is
a common divisor of a,b, then ged(a/d,b/d) = ged(a,b)/d. How many choices of o
are there? Exactly ¢(d). Therefore, Sy has size ¢(d) as claimed. O

Example. As an illustration of the idea of the proof, let n = 12. Then S5 consists
of the numbers from 1 to 12 which have ged 12/12 = 1 with n; we quickly see that
Si1o = {1,5,7,11}. Similarly, S consists of those numbers from 1 to 12 which have
ged 12/6 = 2 with n = 12. One sees that Sg = {2,10}. For d = 4,3,2, 1, one checks
that Sy = {3,9}, 55 = {4,8}, 52 = {6}, 51 = {12}. You can quickly check that every
number from 1 to 12 lies in exactly one of these sets, and that the size of Sy is ¢(d).

The following lemma gives some idea why the previous proposition will be helpful:

Lemma 1. Let g have order d in a group G. Then exactly ¢(d) of g%, ¢, ..., g% have
order d.

Proof. Recall that (g) is isomorphic to Z/dZ, so to count the number of ¢g* with order
d, it suffices to count the number of elements of (Z/dZ,+) of order d (to be proven
next). The order of @ mod d is d/ gcd(a, d), so the number of elements of (Z/dZ, +)
with order exactly d is the number of elements relatively prime to d; this is ¢(d). O

Lemma 2. Let a mod d € Z/dZ. Then a mod d has order d/ ged(a,d).

Proof. The order of a mod d is the smallest positive integer k such that ak = 0
mod d; ie, d | ak. The fact that this £ = ged(a, d) has been used at several places
already; for instance, in the homework assignment concerning lattice points. We give
one possible short proof here:

Suppose p°||d; ie, p¢ is some prime power appearing in the factorization of d. Then
we need to choose k in such a way so that p® | ak; furthermore, we want to choose k
to be as small as possible. Suppose p/||a; then the power of p that divides k should
be p¥ if f > e, and p*~7 if f < e. However, notice that the power of p appearing in
d/ ged(a, d) is pe~™0(f) | which is exactly the same as the two powers described. [

Example. Recall we computed that 22 = 1 mod 17, and that 2* = —1 mod 17,
so that 2 mod 17 has order 8. Then four of the classes 2',22,...,2% mod 17 have

order 8 as well; as a matter of fact, the isomorphism in the proof above tells us that
21,23 25 27 are the powers of 2 which have order 8 mod 17.

Theorem 1 (Theorem 6.5). Let p be a prime, and let d | (p—1) be a positive integer.
Then there are exactly ¢(d) elements of U, with order d.

Proof. Let Sy be the set of elements of U, with order exactly d, and let ng = |Sg|.
First, notice that the sets Sy, as d ranges across divisors of p — 1, partition U,.
Indeed, every element of U, belongs to some S, because each element has an order
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d which divides p — 1, and belongs to exactly one Sy, since an element cannot have
two different orders. This means that > d(p—1)d =D — 1.

On the other hand, we will show that ngy < ¢(d). If there are no elements of
order d, then this inequality is definitely true. If there is an element of order d, say g,
consider the d distinct elements g, g2, .. ., g?. These are all solutions to the polynomial
congruence % = 1 mod p. On the other hand, by a theorem proven a few weeks
ago, this polynomial congruence has at most d solutions. Therefore g, g2, ..., g% are
all the solutions of ¢ =1 mod p. In particular, any element of U, which has order
d appears in the list g, ¢2,...,¢% On the other hand, the previous lemma tells us
that exactly ¢(d) elements in this list have order d. In this case, ng = ¢(d), so for all
d| (p—1), we have ng < ¢(d).

This implies the inequality

Z Ng < Z o(d).
dl(p—1) dl(p—1)

On the other hand, notice that both the left hand side and the right hand side are

equal to p— 1. Therefore, this inequality is an equality. The only way this is possible

is if ng = ¢(d) for all d | (p — 1), as desired. O

A clear consequence of this is that U, is cyclic, since there is not just one, but
¢(p — 1) > 1 elements of order p — 1 in U,,.

The next step, which we will look at next class, is to extend this analysis to U,
for general e > 1.
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