MATH 25 CLASS 26 NOTES, NOV 212011

Contents

1. Calculations involving primitive roots 1

1. Calculations involving PRimitive Roots

Let's look at a few concrete calculations involving primitive roots. First, let's consider the question of finding primitive roots for unit groups mod (odd) prime powers, or prime powers times 2 .

Examples.

- Find a primitive root for U_{125}. One way to approach this problem is to start by finding a primitive root for U_{5}, and then work our way up powers of 5 . Clearly 2 is primitive $\bmod 5$, because $2^{2}=4,2^{3}=8,2^{4}=16$, and only $16 \equiv 1$ $\bmod 5$. We know, based on the proofs from last class, that either 2 or $2+5$ is primitive $\bmod 25$. Furthermore, because 2 is primitive $\bmod 5$, the order of 2 in U_{25} is either 4 or $4(5)=20$. And since $2^{4} \not \equiv 1 \bmod 25$, it is clear that 2 has order 20 in U_{25}, so is primitive in U_{25}. Finally, we saw that if g is primitive $\bmod p^{e}$, and if p is an odd prime, $e \geq 2$, then it is also primitive $\bmod p^{e+1}$, so applied to this situation, 2 is primitive $\bmod 5^{3}=125$.
- Suppose we know that g is a primitive root $\bmod p^{e}$, where p is an odd prime, $e \geq 1$. How do we find a primitive root $\bmod 2 p^{e}$? Recall that we have an isomorphism

$$
U_{2 p^{e}} \simeq U_{2} \times U_{p^{e}}
$$

given by the CRT. The group U_{2} is trivial. So to find a generator for $U_{2 p^{e}}$, we should find a generator for $U_{2} \times U_{p^{e}}$, which is essentially the same as finding a generator for $U_{p^{e}}$. Since we know g is primitive $\bmod p^{e}, g$ is a generator of $U_{p^{e}}$. Then we want to find an element, say g^{\prime}, of $U_{2 p^{e}}$, which corresponds to the element $(1, g)$ under the isomorphism given by the CRT. More concretely, we are looking for a $g^{\prime} \bmod 2 p^{e}$ which satisfies $g^{\prime} \equiv 1 \bmod 2, g^{\prime} \equiv g \bmod p^{e}$. But this is easy to solve; if g is odd, just let $g=g^{\prime}$, and if g is even, let $g^{\prime}=g+p^{e}$, which is odd because p^{e} is.

For instance, if we want to find a primitive root for U_{250}, we already know that 2 is a primitive root for U_{125}. Therefore we want to find a g^{\prime} which is odd and $g^{\prime} \equiv 2 \bmod 125$, so $g^{\prime}=127$ works. (Notice that 2 cannot possibly be a primitive root for U_{250} because it is not even an element of U_{250}.)

Primitive roots can also sometimes make finding 'roots' of numbers mod p^{e} a little easier.

Examples.

- We know that 2 is a primitive root mod 25 . Find all solutions of $x^{4} \equiv 1$ $\bmod 25$. Clearly $1,-1$ solve this congruence, but there could be up to two additional solutions. Let's use primitive roots to help us. Suppose $x^{4} \equiv 1$ $\bmod 25$ is true. Then we can write $x=2^{k}$ for some integer k; as a matter of fact if we restrict $1 \leq k \leq 20=\phi(25)$ then this k is unique. Therefore $2^{4 k} \equiv 1 \bmod 25$. But this is true if and only if $20 \mid 4 k$, or if $5 \mid k$. So we see that $k=5,10,15,20$ give the values $x=2^{5}, 2^{10}, 2^{15}, 2^{20}$ which solve $x^{4} \equiv 1$ $\bmod 25$. Indeed, $2^{5} \equiv 7 \bmod 25,2^{10} \equiv-1 \bmod 25,2^{15} \equiv-7 \bmod 25,2^{20} \equiv$ $1 \bmod 25$, so $\pm 1, \pm 7$ are the solutions of $x^{4} \equiv 1 \bmod 25$.
- For any integer a not divisible by 11 , show that $x^{3} \equiv a \bmod 11$ always has exactly one solution mod 11 . Since U_{11} is cyclic, there exists a primitive root $g \bmod 11$. (For instance one checks that 2 works.) Therefore, any $x \bmod 11$ can be written in the form g^{k} for some integer k; uniquely if we restrict $1 \leq k \leq 10$. Then we want to solve $g^{3 k} \equiv a \bmod 11$. On the other hand, we can write $a \equiv g^{m} \bmod 11$ for some integer $m, 1 \leq m \leq 10$, and since a, g are coprime to 11 , we obtain

$$
g^{3 k} \equiv a \quad \bmod 11 \Rightarrow g^{3 k} \equiv g^{m} \quad \bmod 11 \Rightarrow g^{3 k-m} \equiv 1 \quad \bmod 11 .
$$

The last congruence is true if and only if $10 \mid(3 k-m)$. In other words, we want to know how many solutions (k, l) there are of the equation $3 k-m=10 l$, where m is some constant. Since $\operatorname{gcd}(3,10)=1$, we know that any solution (k, l) satisfies $k=k_{0}+10 n$, where n is any integer; in other words, $k \equiv k_{0}$ $\bmod 10$ where k_{0} is the k-coordinate of some solution. In particular, this means that there is exactly one value of k with $1 \leq k \leq 10$ which makes $g^{3 k} \equiv a \bmod 11$ true, and therefore $x^{3} \equiv a \bmod 11$ has exactly one solution for any value of a. (Actually, this is true even if $a \equiv 0 \bmod 11$.)

- One can check that 6 is a primitive root mod 13 . Suppose we want to solve $x^{3} \equiv 6^{3} \equiv 8 \bmod 13$. Writing $x \equiv 6^{k}$ for a unique $k, 1 \leq k \leq 12$, this is equivalent to $6^{3 k} \equiv 6^{3} \bmod 13$, or $6^{3 k-3} \equiv 1 \bmod 13$, or $12 \mid(3 k-3)$. We know that this has exactly three solutions mod $12: k=1,5,9$. So $x=6,6^{5}, 6^{9}$ solves the original congruence.
The key principle behind each of the previous three examples is that solving equations of the form $x^{k} \equiv a \bmod n$ can be reduced to questions on linear congruences, if U_{n} is cyclic. Even if U_{n} is not cyclic, we can use the CRT to examine $x^{k} \equiv a \bmod p^{e}$ for the various prime powers p^{e} which make up the factorization of n, and then use this technique on each congruence, and then reassemble the answers to find solutions to $x^{k} \equiv a \bmod n$, if there are any.

