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1. Calculations involving primitive roots

Let’s look at a few concrete calculations involving primitive roots. First, let’s
consider the question of finding primitive roots for unit groups mod (odd) prime
powers, or prime powers times 2.

Examples.

• Find a primitive root for U125. One way to approach this problem is to start
by finding a primitive root for U5, and then work our way up powers of 5.
Clearly 2 is primitive mod 5, because 22 = 4, 23 = 8, 24 = 16, and only 16 ≡ 1
mod 5. We know, based on the proofs from last class, that either 2 or 2 + 5
is primitive mod 25. Furthermore, because 2 is primitive mod 5, the order
of 2 in U25 is either 4 or 4(5) = 20. And since 24 6≡ 1 mod 25, it is clear
that 2 has order 20 in U25, so is primitive in U25. Finally, we saw that if g is
primitive mod pe, and if p is an odd prime, e ≥ 2, then it is also primitive
mod pe+1, so applied to this situation, 2 is primitive mod 53 = 125.
• Suppose we know that g is a primitive root mod pe, where p is an odd prime,
e ≥ 1. How do we find a primitive root mod 2pe? Recall that we have an
isomorphism

U2pe ' U2 × Upe

given by the CRT. The group U2 is trivial. So to find a generator for U2pe , we
should find a generator for U2×Upe , which is essentially the same as finding a
generator for Upe . Since we know g is primitive mod pe, g is a generator of Upe .
Then we want to find an element, say g′, of U2pe , which corresponds to the
element (1, g) under the isomorphism given by the CRT. More concretely, we
are looking for a g′ mod 2pe which satisfies g′ ≡ 1 mod 2, g′ ≡ g mod pe.
But this is easy to solve; if g is odd, just let g = g′, and if g is even, let
g′ = g + pe, which is odd because pe is.

For instance, if we want to find a primitive root for U250, we already know
that 2 is a primitive root for U125. Therefore we want to find a g′ which is
odd and g′ ≡ 2 mod 125, so g′ = 127 works. (Notice that 2 cannot possibly
be a primitive root for U250 because it is not even an element of U250.)

Primitive roots can also sometimes make finding ‘roots’ of numbers mod pe a little
easier.
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Examples.

• We know that 2 is a primitive root mod 25. Find all solutions of x4 ≡ 1
mod 25. Clearly 1,−1 solve this congruence, but there could be up to two
additional solutions. Let’s use primitive roots to help us. Suppose x4 ≡ 1
mod 25 is true. Then we can write x = 2k for some integer k; as a matter
of fact if we restrict 1 ≤ k ≤ 20 = φ(25) then this k is unique. Therefore
24k ≡ 1 mod 25. But this is true if and only if 20 | 4k, or if 5 | k. So we see
that k = 5, 10, 15, 20 give the values x = 25, 210, 215, 220 which solve x4 ≡ 1
mod 25. Indeed, 25 ≡ 7 mod 25, 210 ≡ −1 mod 25, 215 ≡ −7 mod 25, 220 ≡
1 mod 25, so ±1,±7 are the solutions of x4 ≡ 1 mod 25.
• For any integer a not divisible by 11, show that x3 ≡ a mod 11 always has

exactly one solution mod 11. Since U11 is cyclic, there exists a primitive root
g mod 11. (For instance one checks that 2 works.) Therefore, any x mod 11
can be written in the form gk for some integer k; uniquely if we restrict
1 ≤ k ≤ 10. Then we want to solve g3k ≡ a mod 11. On the other hand, we
can write a ≡ gm mod 11 for some integer m, 1 ≤ m ≤ 10, and since a, g are
coprime to 11, we obtain

g3k ≡ a mod 11⇒ g3k ≡ gm mod 11⇒ g3k−m ≡ 1 mod 11.

The last congruence is true if and only if 10 | (3k −m). In other words, we
want to know how many solutions (k, l) there are of the equation 3k−m = 10l,
where m is some constant. Since gcd(3, 10) = 1, we know that any solution
(k, l) satisfies k = k0 + 10n, where n is any integer; in other words, k ≡ k0
mod 10 where k0 is the k-coordinate of some solution. In particular, this
means that there is exactly one value of k with 1 ≤ k ≤ 10 which makes
g3k ≡ a mod 11 true, and therefore x3 ≡ a mod 11 has exactly one solution
for any value of a. (Actually, this is true even if a ≡ 0 mod 11.)
• One can check that 6 is a primitive root mod 13. Suppose we want to solve
x3 ≡ 63 ≡ 8 mod 13. Writing x ≡ 6k for a unique k, 1 ≤ k ≤ 12, this is
equivalent to 63k ≡ 63 mod 13, or 63k−3 ≡ 1 mod 13, or 12 | (3k − 3). We
know that this has exactly three solutions mod 12: k = 1, 5, 9. So x = 6, 65, 69

solves the original congruence.

The key principle behind each of the previous three examples is that solving equa-
tions of the form xk ≡ a mod n can be reduced to questions on linear congruences, if
Un is cyclic. Even if Un is not cyclic, we can use the CRT to examine xk ≡ a mod pe

for the various prime powers pe which make up the factorization of n, and then use
this technique on each congruence, and then reassemble the answers to find solutions
to xk ≡ a mod n, if there are any.
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