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1. CALCULATIONS INVOLVING PRIMITIVE ROOTS

Let’s look at a few concrete calculations involving primitive roots. First, let’s
consider the question of finding primitive roots for unit groups mod (odd) prime
powers, or prime powers times 2.

Examples.

e Find a primitive root for Ujs5. One way to approach this problem is to start
by finding a primitive root for Us, and then work our way up powers of 5.
Clearly 2 is primitive mod 5, because 22 = 4,23 = 8,2% = 16, and only 16 = 1
mod 5. We know, based on the proofs from last class, that either 2 or 245
is primitive mod 25. Furthermore, because 2 is primitive mod 5, the order
of 2 in Uy is either 4 or 4(5) = 20. And since 2* £ 1 mod 25, it is clear
that 2 has order 20 in Uss, so is primitive in Uss. Finally, we saw that if ¢ is
primitive mod p°, and if p is an odd prime, e > 2, then it is also primitive
mod p“*t, so applied to this situation, 2 is primitive mod 5% = 125.

e Suppose we know that g is a primitive root mod p®, where p is an odd prime,
e > 1. How do we find a primitive root mod 2p°? Recall that we have an
isomorphism

nge ~ U2 X Upe

given by the CRT. The group Us is trivial. So to find a generator for Use, we
should find a generator for Us x Up,e, which is essentially the same as finding a
generator for Upe. Since we know ¢ is primitive mod p®, g is a generator of U..
Then we want to find an element, say ¢’, of Uy, which corresponds to the
element (1, ¢g) under the isomorphism given by the CRT. More concretely, we
are looking for a ¢ mod 2p°® which satisfies ¢ = 1 mod 2,9 = g mod p°.
But this is easy to solve; if ¢ is odd, just let ¢ = ¢/, and if g is even, let
g = g + p°, which is odd because p° is.

For instance, if we want to find a primitive root for Ussy, we already know
that 2 is a primitive root for Ujgs. Therefore we want to find a ¢’ which is
odd and ¢ =2 mod 125, so ¢' = 127 works. (Notice that 2 cannot possibly
be a primitive root for Usso because it is not even an element of Uss.)

Primitive roots can also sometimes make finding ‘roots’ of numbers mod p° a little
easier.
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Examples.

e We know that 2 is a primitive root mod 25. Find all solutions of z* = 1
mod 25. Clearly 1, —1 solve this congruence, but there could be up to two
additional solutions. Let’s use primitive roots to help us. Suppose z* = 1
mod 25 is true. Then we can write z = 2F for some integer k; as a matter
of fact if we restrict 1 < k& < 20 = ¢(25) then this k£ is unique. Therefore
2% =1 mod 25. But this is true if and only if 20 | 4k, or if 5 | k. So we see
that & = 5,10, 15,20 give the values o = 25,20 2% 229 which solve 2* =
mod 25. Indeed, 2° = 7 mod 25,29 = —1 mod 25,2 = -7 mod 25,2% =
1 mod 25, so £1, 47 are the solutions of 2* =1 mod 25.

e For any integer a not divisible by 11, show that 2° = ¢ mod 11 always has
exactly one solution mod 11. Since Uy is cyclic, there exists a primitive root
g mod 11. (For instance one checks that 2 works.) Therefore, any x mod 11
can be written in the form ¢* for some integer k; uniquely if we restrict
1 < k < 10. Then we want to solve ¢°* = a mod 11. On the other hand, we
can write a = ¢™ mod 11 for some integer m,1 < m < 10, and since a, g are
coprime to 11, we obtain

PF=a modll=¢*=¢™ modll=¢*™=1 mod 11.

The last congruence is true if and only if 10 | (35 — m). In other words, we
want to know how many solutions (k, [) there are of the equation 3k—m = 101,
where m is some constant. Since ged(3,10) = 1, we know that any solution
(k,l) satisfies k = ko + 10n, where n is any integer; in other words, k = kg
mod 10 where kg is the k-coordinate of some solution. In particular, this
means that there is exactly one value of & with 1 < k£ < 10 which makes
¢** = a mod 11 true, and therefore 23 = @ mod 11 has exactly one solution
for any value of a. (Actually, this is true even if a =0 mod 11.)

e One can check that 6 is a primitive root mod 13. Suppose we want to solve
2> = 6% = 8 mod 13. Writing z = 6% for a unique k,1 < k < 12, this is
equivalent to 6°* = 63 mod 13, or 6**73 =1 mod 13, or 12 | (3k — 3). We
know that this has exactly three solutions mod 12: £ =1,5,9. So x = 6, 6°, 6°
solves the original congruence.

The key principle behind each of the previous three examples is that solving equa-
tions of the form ¥ = a mod n can be reduced to questions on linear congruences, if
U, is cyclic. Even if U, is not cyclic, we can use the CRT to examine ¥ = a mod p°
for the various prime powers p® which make up the factorization of n, and then use
this technique on each congruence, and then reassemble the answers to find solutions
to ¥ = a mod n, if there are any.
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