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1. Quadratic congruences: Introduction

We conclude this class by considering the analogue of a classical problem from
secondary school. Consider a quadratic polynomial in a single variable; say f(x) =
ax2 + bx + c. A typical and important question is to determine the roots of this
polynomial; ie, the values of x for which f(x) = 0. When we think of x as being a
real or complex variable, the answer is given by the quadratic equation:

x =
−b±

√
b2 − 4ac

2a
.

Since this is a number theory class, we might be interested in the same equation,
except now we think of x being an element of the integers mod n. Instead of starting
from scratch, we might ask whether the quadratic equation works when we think of
x as a variable in Z/nZ. Addition, subtraction, and multiplication are all defined
for Z/nZ. Division is defined if we are dividing by a unit of Z/nZ, so we might run
into difficulties if 2 or a are not units mod n. But the biggest problem is figuring out
what to make of the

√
b2 − 4ac term.

When we think of x as a real or complex variable, then we simply accept the fact
that square roots of real or complex numbers exist, as complex numbers. But what
if we are in Z/nZ? Then it is not so clear that square roots exist, and even if they
do, we want an effective way to calculate them. After all, a square root in Z/nZ will
be represented by a congruence class of Z/nZ so we should have a way to determine
what that congruence class actually is. In other words, given an integer a, we want
to know when x2 ≡ a mod n has a solution, and if it does, how to find all solutions.

Of course, since this is a finite problem we can use the naive method and just
use trial and error. But this takes a long time and is not particularly efficient.
Furthermore, a trial and error method does not provide any enlightening theoretical
information about the numbers in Z/nZ which are square roots and the numbers
which are not square roots. For instance, if a is a real number, then we know

√
a

is real exactly when a ≥ 0. We want some sort of similar, (relatively) easy to
state condition for determining when x2 ≡ a mod n has a solution. The theory
is simplest when we restrict ourselves to elements in Un; in practice this is not too
harmful because we will mostly be interested in the case when n is prime.

Definition 1. An element of Un is called a quadratic residue mod n if the congruence
equation x2 ≡ a mod n has a solution in Un. The set of quadratic residues in Un is
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frequently denoted Qn. An element of Un which is not a quadratic residue is called a
quadratic non-residue.

Examples.

• Let n = 5. The set of quadratic residues is 1, 4 mod 5, because 12 ≡ 1
mod 5, 22 ≡ 4 mod 5, 32 ≡ 4 mod 5, 42 ≡ 1 mod 5. So one way to compute
Qn is to simply square every element of Un and look at the results. Notice
that we already see that not all elements of Un have to be quadratic residues.
• Let n = 8. The set of quadratic residues is then just 1 mod 8, because

12, 32, 52, 72 ≡ 1 mod 8.

The following proposition is of fundamental importance. We will shortly see a
stronger version of this proposition which holds when n is prime.

Proposition 1 (Lemma 7.2). Qn is a subgroup of Un.

Proof. Let a, b ∈ Qn, and let xa, xb be two elements of Un which square to a, b. Then
xaxb ∈ Un, and its square is (xaxb)

2 = x2
ax

2
b = ab, so ab is also in Qn. Clearly the

identity element 1 is in Qn, since 12 = 1, and finally, if x2
a = a, then (x−1a )2 = a−1,

and since x−1a ∈ Un, a−1 ∈ Qn. These three properties confirm the fact that Qn is a
subgroup of Un. �

2. When n = p: introduction and notation

A common theme in this class is that when asking questions about integers mod
n, it is frequently best to start with the case n = p, and then work our way to prime
powers, and then to general n. So we will consider quadratic residues mod primes
p. We first define a convenient notation for indicating when a number is a quadratic
residue mod p. From now on, we will let p be an odd prime; when p = 2 we already
know that 1 is a quadratic residue mod 2.

Definition 2. Let p be an odd prime, and let a be any integer. The Legendre symbol
of a mod p is defined to be

(
a

p

)
=

 1 if a ∈ Qp,
−1 if p - a, a 6∈ Qp,
0 if p | a.

The notation might see a little odd at first, because it looks like the number a/p
with parentheses around it. As a matter of fact, this notation is ambiguous, but
the context should make it clear whether we mean the number a/p or the Legendre

symbol
(

a
p

)
.

Example. Let p = 5. Then

(
a

p

)
=

 1 if a ≡ 1, 4 mod 5,
−1 if a ≡ 2, 3 mod 5,
0 if 5 | a.

http://en.wikipedia.org/wiki/Legendre_symbol


MATH 25 CLASS 27 NOTES, NOV 22 2011 3

There is a nice interaction between the values of the Legendre symbol and primitive
roots mod p. This proposition also gives some indication why the values of the
Legendre symbol are what they are.

Proposition 2 (Lemma 7.3, Corollary 7.4). Let g be a primitive root mod p. Then
a ≡ gi mod p is a quadratic residue if and only if i is even. In particular, there are
(p− 1)/2 quadratic residues mod p and (p− 1)/2 quadratic non-residues mod p, and(

gi

p

)
= (−1)i.

Proof. We want to know when x2 ≡ a ≡ gi mod p has a solution. This has a solution
if and only if there is some integer k such that gk = x solves the above; in other words,
when g2k ≡ gi mod p has a solution k. This has a solution if and only if g2k−i ≡ 1
mod p has a solution, which has a solution if and only if (p− 1) | (2k − i), or 2k ≡ i
mod (p−1), has a solution, where k is the variable. And we know this has a solution
if and only if gcd(2, p − 1) = 2 divides i, which is the same as saying that i is even.
Notice that the parity of i is independent of the actual choice of i, because p − 1 is
even. (For instance, even though 3 ≡ 23 ≡ 211 mod 8, so that we could have chosen
i = 3 or 11, their parity is identical because 4 is even, and adding an even number
to an integer i does not change the parity of i.)

For the other parts of the proposition, of the p−1 elements g mod p, g2 mod p, . . . , gp−1

mod p, exactly (p−1)/2 of them have exponents which are even, and exactly (p−1)/2

have exponents which are odd. And
(

gi

p

)
= (−1)i is true because

(
gi

p

)
= 1 if and

only if i is even, if and only if (−1)i = 1. �

Example. Let p = 7. A primitive root mod 7 is 3. We have

31 ≡ 3 mod 7, 32 ≡ 2 mod 7, 33 ≡ 6 mod 7, 34 ≡ 4 mod 7, 35 ≡ 5 mod 7, 36 ≡ 1 mod 7.

By the above proposition, 2, 4, 1 mod 7 are the quadratic residues mod 7, and 3, 6, 5
mod 7 are the quadratic non-residues mod 7.

From a computational point of view, the previous proposition is not very useful
for determining the actual elements in Qp, because it involves finding a primitive
root (which is nontrivial). It will no slower to simply square all the elements in Up.
However, the value of this proposition is not in its computational use but rather in
its theoretical use.

Another reason for defining the values of the Legendre symbol to be 0,±1 is because
of the following corollary, which is a stronger version of the fact that Up is a subgroup:

Corollary 1 (Theorem 7.5). Let a, b be any integers. Then(
a

p

)(
b

p

)
=

(
ab

p

)
.

Proof. First, suppose that either p | a or p | b. Then one of the terms on the left
hand side is equal to 0, and as p | ab, the right hand side equals 0, so the corollary is
true in this case. Now suppose p - a, b. Then using the previous proposition, if we let



4 MATH 25 CLASS 27 NOTES, NOV 22 2011

g be a primitive root mod p and a ≡ gi mod p, b ≡ gj mod p for two integers i, j,
then (

a

p

)(
b

p

)
= (−1)i(−1)j = (−1)i+j =

(
ab

p

)
,

where in the last equality we used the fact that ab ≡ gi+j mod p. �

This result can be rephrased in various ways. For instance, this result tells us that
the product of two QRs (quadratic residues) is still a QR, because 1 · 1 = 1, which
we already knew since Qp is a subgroup. But it also tells us that the product of two
non-QRs (quadratic non-residues) is a quadratic residue, since −1 · −1 = 1, and it
also tells us that a product of a QR with a non-QR is a non-QR.

There is also an interpretation of this result in terms of algebra. Recall that an
isomorphism is a function f : G → G′ such that f is a bijection, and f(g1g2) =
f(g1)f(g2). While it is not true that the Legendre symbol, which gives a map(

·
p

)
: Up → {±1},

is an isomorphism (simply because it is not a bijection), it does have the property
that f(g1g2) = f(g1)f(g2). This map is called a homomorphism of G to G′, so in this
terminology the Legendre symbol is a homomorphism from Up to ±1.

Example. This corollary allows us to reduce the computation of a Legendre symbol(
a
p

)
by factoring a. For instance, suppose we want to calculate

(
12
13

)
. Since 12 = 22 ·3,

we have (
12

13

)
=

(
2

13

)(
2

13

)(
3

13

)
=

(
3

13

)
,

where in the last equality we use the fact that
(

2
13

)2
= 1, since (±1)2 = 1. Since

42 ≡ 3 mod 13,
(
12
13

)
=
(

3
13

)
= 1.

This example makes it clear that one possible approach to computing
(

a
p

)
is to

figure out how to compute
(

a
p

)
when a itself is either an odd prime, 2, or −1. Before

we investigate this problem, we will prove another proposition which provides another
way of computing the Legendre symbol, which will be useful for theoretical purposes.

Proposition 3 (Theorem 7.6). Let a be any integer. Then

a(p−1)/2 ≡
(
a

p

)
mod p.

Proof. If p | a, then a(p−1)/2 ≡ 0 mod p, and also
(

a
p

)
≡ 0 mod p, so the proposition

is clear in this case. So suppose p - a.
Since (a(p−1)/2)2 ≡ ap−1 ≡ 1 mod p, we know that a(p−1)/2 ≡ ±1 mod p. Let g be

any primitive root mod p. Recall that we know a is a quadratic residue mod p if and
only if a ≡ gi mod p for an even integer i. Plugging in a ≡ gi into a(p−1)/2, we get
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a(p−1)/2 ≡ gi(p−1)/2.

This is equal to 1 mod p exactly when (p − 1) | i(p − 1)/2. Clearly this is the case
if and only if i is even. Therefore, assuming p - a, a(p−1)/2 ≡ 1 mod p if and only if
a is a quadratic residue mod p, as desired. �

Example. Let p = 7. Then (p − 1)/2 = 3, so to determine whether a mod p
is a quadratic residue mod 7, we can calculate a3 mod p. For example, 23 ≡ 1
mod 7, 33 ≡ −1 mod p, so 2 ∈ Qp while 3 6∈ Qp.

In practice, calculating a(p−1)/2 mod p might be slightly faster than the brute force
method of listing all the squares mod p by calculating 12, 22, . . . mod p, but it can
still take a while, if p is reasonably large. For instance, it would be hard to calculate
a(p−1)/2 mod p by hand if p were a three digit number.

These general properties of the Legendre symbol and quadratic residues will be used
in the next class, when we start looking for ways to rapidly compute the Legendre

symbol. We will start with the symbols
(
−1
p

)
and

(
2
p

)
, and then think about the

more general symbol
(

q
p

)
, where q is an odd prime.
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