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1. Evaluating
(

−1
p

)
We begin by evaluating

(
−1
p

)
. Fortunately, we have done most of the work already.

Proposition 1 (Corollary 7.7).(
−1

p

)
=

{
1 if p ≡ 1 mod 4,
−1 if p ≡ 3 mod 4.

An equivalent way of writing this is(
−1

p

)
= (−1)(p−1)/2.

Proof. Apply Euler’s criterion. Indeed,(
−1

p

)
= (−1)(p−1)/2,

and (p− 1)/2 is odd exactly when p ≡ 3 mod 4. �

So, for instance, this result proves that
(

−a
p

)
=

(
a
p

)
if and only if p ≡ 1 mod 4.

Even though this result was trivial given the theorems we knew, there are surprising
facts we can prove using this result. For instance, recall that we could prove that there
were infinitely many primes of the form 4k+ 3 using a straightforward generalization
of Euclid’s proof of the infinitude of prime numbers, but that such a generalization
would not work for primes of the form 4k + 1 (the obstruction being that a number
of form 4k+ 1 does not need to have a prime of form 4k+ 1 as a factor). We can now
adopt Euclid’s proof to prove that there are infinitely many primes of form 4k + 1.

Proposition 2 (Corollary 7.8). There are infinitely many primes of form 4k + 1.

Proof. Suppose there are only finitely many primes of the form 4k+ 1. Let p1, . . . , pr
be all such primes. Let N = (2p1 . . . pr)

2 + 1. Then N has form 4k + 1, and is not
divisible by any pi. Let p be any prime dividing N . Then (2p1 . . . pr)

2 ≡ −1 mod p,
but this means that −1 is a square mod p, which is only possible if p ≡ 1 mod 4.
This contradicts the fact that no pi divides N . Therefore there must be infinitely
many primes of the form 4k + 1. �
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2. Gauss’ Lemma, evaluating
(

2
p

)
To compute

(
a
p

)
for a 6= ±1, we will repeatedly use the following fundamental

fact. Let P = {1, 2, . . . , (p − 1)/2} ⊂ Up be the set of elements of Up which can be
represented by 1, 2, . . . (p− 1)/2, and let N = {−1,−2, . . . ,−(p− 1)/2} ⊂ Up be the
set of elements of Up which can be represented by −1,−2, . . . ,−(p−1)/2. Notice that
P,N are disjoint and that P ∪N = Up. For instance, if p = 7, then P = {1, 2, 3}, and
N = {−1,−2,−3}. For a ∈ Up, let aP be the subset of Up obtained by multiplying
each element of P by a. For instance, if p = 7, a = 3, then aP = {3, 6, 9} = {2, 3, 6}.

Theorem 1 (Theorem 7.9, Gauss’ Lemma). Let a ∈ Up. Then
(
a
p

)
= (−1)µ, where

µ = #(aP ∩N).

Proof. The proof is a variation on the method used to prove Fermat’s Little Theorem.
The first observation is to notice that not only are the various elements of aP distinct;
that is, not only is ai ≡ aj mod p possible only if i = j, but also that ai ≡ −aj
mod p is impossible. Indeed, if ai ≡ −aj mod p, then a(i+j) ≡ 0 mod p, and since
a is invertible mod p, this implies that i+j ≡ 0 mod p. But since 1 ≤ i, j ≤ (p−1)/2,
i+ j ≡ 0 mod p is impossible.

As a consequence, this implies that each of the (p−1)/2 subsets {±1}, {±2}, . . . , {±(p−
1)/2} contains exactly none or one element of aP . Since aP has size (p− 1)/2, and
these (p− 1)/2 subsets contain every element of Up, so that each element of aP is in
one of these subsets, we see that each of these (p− 1)/2 subsets contains exactly one
element of aP .

Therefore, for each j = 1, 2, . . . , (p − 1)/2 (ie, each j ∈ P ), we may uniquely
write aj = εjja (this equation is taking place in Up), where εj = ±1 and ja =
1, 2, . . . , (p− 1)/2. Furthermore, the ja are just a permutation of the elements of P .
(Another way of saying this is that the map j 7→ ja is a bijection of P into itself.)

How many of the εj are equal to −1? Notice that εj = −1 if and only if aj ∈ N .
Therefore, the number of εj equal to −1 is equal to the number of elements in aP ∩N .

Take the (p − 1)/2 equations aj ≡ εjja mod p, and multiply them together. We
get

a(p−1)/2((p− 1)/2)! ≡ (−1)µ((p− 1)/2)! mod p,

where we are using the fact that the ja are just a rearrangement of the elements of P .
Since ((p − 1)/2)! is relatively prime to p, we can cancel this term from both sides,
to obtain

a(p−1)/2 ≡ (−1)µ mod p.

However, Euler’s criterion says that a(p−1)/2 ≡
(
a
p

)
mod p, so

(
a
p

)
≡ (−1)µ mod p,

and since these two numbers are either ±1, we really have an equality of integers.
�

Example. Let’s illustrate the idea of the proof with an example. Let p = 7, and let
a = 3. We want to calculate

(
3
7

)
using the ideas in the proof of Gauss’ Lemma. First,



MATH 25 CLASS 28 NOTES, NOV 28 2011 3

P = {1, 2, 3}, while N = {4, 5, 6}. We then have aP = 3P = {3, 6, 9} = {2, 3, 6}.
Therefore, aP ∩ N = {6}, so µ = 1, and Gauss’ Lemma says that

(
3
7

)
= −1, which

agrees with all the other calculations we have done.
Let’s work through the actual steps of the proof with this example. First, we

determine εj, ja as follows:

a · 1 = 3 · 1 = (1) · 3, a · 2 = 6 ≡ (−1) · 1 mod 7, a · 3 = 9 ≡ (1) · 2 mod 7,

so ε1 = ε3 = 1, ε2 = −1, and 13 = 3, 23 = 1, 33 = 2. Notice that the number of εj
equal to −1 is precisely the size of aP ∩ N , and that the ja are a permutation of
1, 2, 3. Multiplying the congruences listed above together gives

a3(1)(2)(3) ≡ (1)2(−1)1(3)(1)(2) mod 7,

which reduces to a3 ≡ −1 mod 7, and a3 ≡
(
a
7

)
mod 7 by Euler’s criterion.

Using Gauss’ Lemma, we can immediately compute
(

2
p

)
.

Proposition 3 (Corollary 7.10).(
2

p

)
=

{
1 if p ≡ 1, 7 mod 8,
−1 if p ≡ 3, 5 mod 8.

An equivalent way of writing this is(
2

p

)
= (−1)(p

2−1)/8.

Proof. First, it is easy to check that the two formulas above are identical, because
(p2 − 1)/8 is even exactly when p ≡ 1, 7 mod 8, and odd when p ≡ 3, 5, mod 8.

To check that these formulas are true, we apply Gauss’ Lemma with a = 2. We
have 2P = {2, 4, . . . , p − 1}. How many of these are elements of N? Every element
which is greater than (p−1)/2 is in N . In other words, we want to count the number
of i, with 1 ≤ i ≤ (p − 1)/2, such that 2i > (p − 1)/2, or 4i > (p − 1). At this
point things are perhaps simplest if we separately consider the cases where p ≡ 1
mod 4, p ≡ 3 mod 4.

When p ≡ 1 mod 4, the i with 4i > (p−1) are (p−1)/4+1, (p−1)/4+2, . . . , (p−
1)/2; there are evidently (p− 1)/4 such numbers. Then Gauss’ Lemma says that(

2

p

)
= (−1)(p−1)/4.

The exponent (p − 1)/4 is even exactly when p ≡ 1 mod 8, and is odd when p ≡ 5
mod 8.

Now suppose that p ≡ 3 mod 4. Then the i with i > (p − 1)/4 are (p − 3)/4 +
1, (p− 3)/4 + 2, . . . , (p− 1)/2 = (p− 3)/4 + (p+ 1)/4. There are evidently (p+ 1)/4
such numbers. Then Gauss’ Lemma says that(

2

p

)
= (−1)(p+1)/4.

The exponent (p + 1)/4 is even exactly when p ≡ −1 ≡ 7 mod 8, and is odd when
p ≡ 3 mod 8. Taken together, these two cases prove the original proposition. �
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So far, we have seen that determining whether −1, 2 are quadratic residues mod
p boils down to checking which congruence class p lives in mod 4, 8 respectively – a
calculation which is easy and fast to do. What about more general numbers?

3. The quadratic reciprocity law: statement

Recall that (
ab

p

)
=

(
a

p

)(
b

p

)
.

This means that, at least in principle, if we know how to calculate
(
q
p

)
for various

primes q (and maybe also q = −1, for convenience), then we can calculate
(
a
p

)
for

arbitrary a, once we factor a. We’ve already computed
(
q
p

)
for q = −1, 2. From now

on we will let q be an odd prime.

The result which lets us calculate
(
q
p

)
efficiently is the celebrated law of quadratic

reciprocity. We will state the result and give a few examples of its use in computing
Legendre symbols, and give the proof next class.

Theorem 2 (Quadratic Reciprocity, Theorem 7.11). Let p, q be distinct odd primes.
Then (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

An alternate formulation is as follows: if either p, q is ≡ 1 mod 4 (possibly both),

then
(
p
q

)
,
(
q
p

)
are equal; if both p, q ≡ 3 mod 4, then

(
p
q

)
,
(
q
p

)
have opposite sign.

First, notice that it is obvious that the alternate formulation is equivalent to the
first formulation of the quadratic reciprocity law. Indeed, the exponent of −1, which
is p−1

2
q−1
2

, is even exactly when at least one of p−1
2
, q−1

2
is even, and these are even

when p, q ≡ 1 mod 4. When the exponent of −1 is even, then
(
p
q

)(
q
p

)
= 1, and

so are equal; when the exponent of −1 is odd, then
(
p
q

)(
q
p

)
= −1, and then are

unequal.
This may very well be the best theorem we learn in this class. It is of fundamental

importance to the subject of quadratic residues, because (as we will see) it drastically
speeds up the computation of Legendre symbols and makes it clear that the phenom-
enon we observed already, where determining whether −1, 2 are quadratic residues
mod p or not is reduced to finding p mod 4, 8, holds in general.

The theorem is also very surprising. After all, there is nothing on the surface which
suggests that whether p is a square mod q should have anything to do with q being a
square mod p. Indeed, the name ‘quadratic reciprocity’ arises exactly from this fact,
because there is some sort of ‘reciprocal relationship’ between the primes p, q and
their quadratic residues.

Not only is the theorem surprising and its applications important and varied, the
theorem also has many elegant, clever, and deep proofs. Like the Pythagorean The-
orem, there are hundreds of proofs of quadratic reciprocity (something like 230 or
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so by one person’s count) that exist. The various proofs of quadratic reciprocity all
share the feature that none are obvious, but many of them are elegant and clever. As
a matter of fact, Euler and Legendre had already conjectured quadratic reciprocity,
but neither of them could prove it. It was Gauss who gave the first proof, in his late
teenage years. Throughout his life he kept returning to this problem and ended up
giving something like six different proofs of this theorem. Gauss himself held this
theorem in the highest esteem, calling it his Theorem aureum, or ‘golden theorem’.
The various standard proofs of quadratic reciprocity all draw on different techniques,
and illuminate different aspects of the theory.

Furthermore, the quadratic reciprocity law was the starting point of many related
investigations in number theory. The most obvious potential generalizations of qua-
dratic reciprocity are to ‘cubic reciprocity’ and ‘biquadratic reciprocity’, which involve
asking whether x3 ≡ a mod p, x4 ≡ a mod p have solutions or not. Obviously, the
theory is more complicated than quadratics, but a lot of progress was made towards
these problems in the 19th century. The search for a general reciprocity law which
contained all these results (in some form or another) eventually led to the Artin reci-
procity law, which is a central part of algebraic number theory and class field theory.
The problem of searching for what is known as ‘non-abelian class field theory’, which
in its essence is supposed to be a further generalization of the Artin reciprocity law,
is one of the central problems of modern number theory.

Let’s return to concrete calculations. The following examples should make some
of the power of quadratic reciprocity clear.

Examples.

• Characterize all primes p for which 5 is a quadratic residue. First, notice

that
(
5
2

)
= 1. Let p > 2 be an odd prime not equal to 5. Then

(
5
p

)
=

(
p
5

)
by quadratic reciprocity, because 5 ≡ 1 mod 4. But

(
p
5

)
= 1 if and only

if p ≡ 1, 4 mod 5, because those are the only quadratic residues mod 5.
Therefore 5 is a quadratic residue mod p if and only if p ≡ 1, 4 mod 5.
• Consider the prime p = 401. Evaluate

(
132
401

)
. We first factor 132 = 22 · 3 · 11.

Then (
132

401

)
=

(
2

401

)2(
3

401

)(
11

401

)
=

(
3

401

)(
11

401

)
.

To evaluate these two Legendre symbols we use quadratic reciprocity. First,
notice 401 ≡ 1 mod 4, so(

3

401

)
=

(
401

3

)
=

(
2

3

)
= −1,

and (
11

401

)
=

(
401

11

)
=

(
5

11

)
=

(
11

5

)
=

(
1

5

)
= 1.

(We used quadratic reciprocity with 5, 11 in this calculation!) Therefore(
132
401

)
= −1, so 132 is not a quadratic residue mod 401.
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