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• Uniqueness, existence of Euclidean division
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• The key lemma behind the Euclidean algorithm
• The Euclidean algorithm for computing gcd

1. Euclidean division

A concept related to the notion of divisibility is Euclidean division. How does this
differ from ordinary division? Euclidean division is simply the name we give to the
elementary school calculation of division with remainder. For example, suppose we
want to divide 13 by 5. On the one hand, the answer is 13/5, but it is also 2 with
a remainder of 3, because 13 = 2(5) + 3. The following theorem tells us that this
remainder is unique. Notice that although it might be intuitively obvious that the
remainder is unique, the following proof establishes this fact rigorously.

Theorem 1 (Theorem 1.1 of text). Let a, b be integers, with b > 0. Then there exists
a unique integer r such that 0 ≤ r < b, with

a = qb + r

for some unique integer q. We call r the remainder of a divided by b.

Proof. Let’s prove this theorem. First, let’s show that we can find some q, r satisfying
the above, and take care of the uniqueness later. Consider the set of integers S =
{a − qb|q ∈ Z, a − qb ≥ 0}. This is the set of integers which differ from a by a
multiple of b, and such that the difference a − qb is non-negative. This set consists
solely of non-negative integers, and is non-empty. To see why this is non-empty, all
we need to do is choose q sufficiently negative to ensure that a− qb > 0. It is a fact
(actually, an axiom, in the sense that we can’t prove it from simpler statements) that
any non-empty set of positive integers (or non-negative integers) has a least element.
This is called the well-ordering principle. It seems obvious; however, note that this
is false if we replace N with Z,Q, or R. In any case, we know that S has a least
element by this principle. Call this least element r. Then obviously r = a − qb for
some integer q. How do we know that 0 ≤ r < b? First, we know that 0 ≤ r, by the
fact that r ∈ S and S consists only of positive integers. To show that r < b, we will
use a proof by contradiction. If r ≥ b, then a− (q + 1)b = r − b ≥ 0. However, this
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means that (r − b) ∈ S, and r − b < r, which contradicts the fact that r is the least
element in S. Therefore, we must have r < b.

So we’ve shown the existence of integers q, r such that a = qb + r and 0 ≤ r < b.
Now let’s show that they’re unique. Suppose that there are two pairs q1, r1, q2, r2
satisfying the above. Then equating the two equations, we get

q1b + r1 = a = q2b + r2.

This is equivalent to
(r1 − r2) = b(q2 − q1).

However, notice that because 0 ≤ r1, r2 < b, we must have −b < r1 − r2 < b. On
the other hand, the right hand side is a multiple of b; that is, b|(r1 − r2). But the
only way this is possible is if r1 − r2 = 0, or r1 = r2. This immediately tells us that
q1 = q2 as well. So the pair (q, r) must be unique. �

There are a few key ideas to take away from this proof. First, the remainder
r is characterized by being the smallest non-negative integer of the form a − qb,
where q is some integer. Second, a common way to prove that a there is a unique
object satisfying a certain set of properties is to show that if two objects satisfy
that set of properties, those objects must be equal. On the other hand, you should
remember that proving uniqueness is separate from proving existence: in the proof
above, we prove existence of a remainder using totally separate methods from proving
uniqueness.

Examples.

• We saw earlier that 13 divided by 5 with remainder gives q = 2, r = 3.
• Let a = −7, b = 4. Then −7 divided by 4 with remainder gives q = −2, r = 1,

since −7 = (−2) · 4 + 1. Notice that q is allowed to be negative, but the
remainder never is.
• (Example 1.2 of the text) We can use division with remainder to determine

all possible remainders of x2 when divided by 4. Before working out this
example, list the first few squares (0, 1, 4, 9, . . .), and find their remainders
when you divide by 4. What do you notice? Let’s prove this observation.
For any x, we can find q, r such that x = 4q + r, with 0 ≤ r < 4. Then
x2 = (4q + r)2 = 16q2 + 8rq + r2. When we divide this by 4, notice that
because 4 | 16q2 and 4 | 8qr, the remainder when we divide x2 by 4 is the
same as when we divide r2 by 4. But since r = 0, 1, 2, 3, we need only check
that 0, 1, 4, 9 leave remainders of 0, 1, 0, 1, respectively. So the only possible
remainders for squares when divided by 4 are 0 and 1. We’ll come back to
many calculations like this later in the class.

2. Greatest common divisor

Suppose a, b are two integers. If another integer d satisfies d|a, d|b, we call d a
common divisor of a, b. Notice that as long as at least one of a, b is nonzero, then
there will be a largest positive common divisor. We call this number the greatest
common divisor of a, b. We will write this number as gcd(a, b), or if we are really
lazy, just (a, b). (Yes, this last notation is very ambiguous, since (a, b) is more familiar
as the ordered pair (a, b), but the context should usually make what we mean clear.
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To make things worse, (a, b) sometimes might even mean the open interval a < x < b.
Having three totally unrelated uses of the same notation is not the best, but it usually
should be clear what we mean!)

Examples.

• Suppose a = 8, b = 12. The (positive) divisors of a are 1, 2, 4, 8, while the
divisors of b are 1, 2, 3, 4, 6, 12. Looking at this list, the greatest common
divisor of 8, 12 is evidently 4.
• Suppose a = 72, b = 74. The most naive way of computing the gcd is to

enumerate all the divisors of 72 and 74, and then compare the list. But
suppose we don’t want to do that – after all, it looks like it’ll take a lot of
work to find all the divisors of 72 and 74! How might we save the amount
of calculations we have to make? Suppose d|a, b, so that d is any common
divisor of a, b. Then d|(b− a). But in this case, b− a = 2, so d|2. Therefore,
the only possible common divisors are 1, 2. We easily can see that 2|72, 74,
so this means that gcd(72, 74) = 2. The moral of this example is that there
are more efficient ways of calculating gcds than simply jumping right in and
enumerating divisors, which in general will take a very long time.
• Suppose b|a, and b > 0. What is gcd(a, b)?
• We can also extend the definition of gcd to more than two integers. The

greatest common divisor of a set of integers a1, . . . , ak is the largest positive
integer d such that d|a1, . . . , ak. For example, if a = 4, b = 6, c = 8, then
gcd(4, 6, 8) = 2. We can show this by either enumerating all the divisors of
a, b, c, or by applying the following fact (exercise 1.9 of the text): If a1, . . . , ak
are integers, then gcd(a1, . . . , ak) = gcd(gcd(a1, a2), a3, . . . , ak). In practice,
what this means is that we can calculate the gcd of k integers by taking the
gcd of k − 1 pairs of integers. For example, gcd(4, 6, 8) = gcd(gcd(4, 6), 8) =
gcd(2, 8) = 2.
• Notice that 1|a for all integers a. So a greatest common divisor is always at

least 1. In the case that gcd(a, b) = 1, we say that a, b are relatively prime or
coprime. A list of integers a1, . . . , ak is called coprime if gcd(a1, . . . , ak) = 1,
and is called mutually coprime if gcd(ai, aj) = 1 for all distinct pairs ai, aj.
• For instance, since gcd(8, 9) = 1, 8, 9 are coprime. To see that a list of

integers being coprime is distinct from being mutually coprime, consider the
list 8, 12, 7. This list is coprime, since gcd(8, 12, 7) = 1, but is not mutually
coprime, because gcd(8, 12) = 4. A list like 6, 11, 17 is both coprime and
mutually coprime.

3. The Euclidean algorithm for calculating gcds

What’s the relationship between Euclidean division and gcds? It turns out that
Euclidean division is the key tool for a very efficient method of calculating the gcd
of two integers. We call this method the Euclidean algorithm, and it is based on the
following simple lemma:

Lemma 1. Let a, b be integers with b > 0. Let a = bq + r be the result of Euclidean
division, so that 0 ≤ r < b. Then gcd(a, b) = gcd(b, r).
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Proof. Suppose d | a, b, so gcd(a, b) is the largest such d. Since r = a − qb, we must
also have d | r. Therefore, d | a, b =⇒ d | b, r. This means that gcd(a, b) ≤ gcd(b, r).
Conversely, if d | b, r, then a = bq + r implies that d | a. So d | b, r implies that
d | a, b, so gcd(b, r) ≤ gcd(a, b). The only way both of these inequalities is true is if
gcd(a, b) = gcd(b, r). �

The proof of this lemma illustrates another useful proof technique. If you are asked
to prove that two numbers are equal, it is sometimes easiest to do so by showing that
each number is larger than the other.
Example. For instance, suppose a = 124, b = 24. Instead of listing all the divisors
of 124 and 24, we use Euclidean division to find 124 = 5 · 24 + 4, so q = 5, r = 4.
Therefore gcd(124, 24) = gcd(24, 4) = 4.

This lemma is really useful, because it allows us to replace the computation of
gcd(a, b) by the computation of gcd(b, r) for the cost of one Euclidean division. The
advantage to this replacement is that we can always select a > b (we’ll just assume
a > 0; if a < 0, replace a with |a|), so that b, r are smaller numbers than a, b. If we
are lucky, r will be really small and we will be able to compute b, r via inspection or
brute force.

But even if we aren’t lucky, so that b, r are still somewhat large, we can just repeat
this process! That is, we can divide b by r with remainder, to get something like
b = q2r+ r2, where 0 ≤ r2 < r, and then gcd(b, r) = gcd(r, r2). So we can continually
replace the calculation of a gcd of a pair of integers with the calculation of the gcd of
a pair of smaller integers at the cost of one Euclidean division. This process, where
we repeatedly calculate Euclidean divisions to help us calculate a gcd, is called the
Euclidean algorithm. Let’s look at an example.

Example. Compute the gcd of a = 994 and b = 399 using the Euclidean algorithm.
We begin by doing a Euclidean division on 994 by 399:

994 = 399 · 2 + 196.

So q = 2, r = 196. Since we’ll be repeating Euclidean division, let’s write q = q1 =
2, r1 = 196. So we have

994 = a = q1b + r1 = 2 · 399 + 196.

Remember, right now we know that gcd(994, 399) = gcd(399, 196). However, it’s not
immediately obvious what gcd(399, 196) is, so let’s do a Euclidean division with that
pair of numbers:

399 = 196 · 2 + 7.

We can rewrite this as

399 = b = q2r1 + r2,

where q2 = 2, r2 = 7. So this tells us that gcd(399, 196) = gcd(196, 7). It might not
be immediately obvious what gcd(196, 7) is, but a Euclidean division tells us that

196 = 7 · 28 + 0,
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so 7|196. We can write q3 = 28, r3 = 0. Therefore, gcd(196, 7) = 7, so gcd(994, 399) =
7.

Altogether, it took us 3 Euclidean divisions to reach our final answer. A Euclidean
division requires a fair amount of work, but not much more work than simply testing
whether a number divides another number. In particular, notice that this method
of calculating gcds is probably faster than trying to list all the factors of the initial
two numbers 994 and 399. And if a, b are really large (like tens or hundreds of digits
long), then a computer can still calculate gcds really quickly, but will take a long
time (unless you are extremely lucky) to calculate all the factors of a, b.

We can formalize the Euclidean algorithm as follows. Given an initial pair of
integers a, b, with a, b > 0, we compute their gcd using the following procedure.

(1) If a < b, swap a, b so that a ≥ b.
(2) Compute q, r such that a = bq + r, where 0 ≤ r < b.
(3) If r = 0, then b | a, and gcd(a, b) = b. Otherwise, replace a, b with b, r, return

to step 2, and repeat. Notice that gcd(a, b) = gcd(b, r) by Lemma 1.

This verbal description of the Euclidean algorithm looks like it could be converted
to an actual computer program with little effort, and in the next programming as-
signment you will do just that. There are two important facts about this algorithm
that we would want to verify if we wanted to be rigorous with our analysis: first, the
algorithm should be correct, in that if it returns a result the result should always be
the gcd of a, b, and second, the algorithm will terminate in a finite number of steps.
We leave both of these verifications as exercises; for the second, a useful observation
is that a strictly decreasing sequence of non-negative integers must be of finite length.
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