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Quick links to definitions/theorems

• The main theorem on solving a linear equation in integers

1. Bezout’s Identity

It turns out that the Euclidean algorithm can help us solve other problems related
to gcds. First, we’ll see that the Euclidean algorithm provides a method for us to
solve the equation

ax + by = gcd(a, b),

in integers x, y. For instance, the Euclidean algorithm will give us a way to find an
integer solution to the equation 994x+399y = 7. (Notice that without the Euclidean
algorithm, it’s not even obvious whether this has an integer solution.)

How do we do this? Suppose we calculate gcd(a, b) by applying the Euclidean
algorithm to a, b. Then this gives a sequence of Euclidean divisions of the form

a = q1b + r1, b = q2r1 + r2, r1 = q3r2 + r3, . . . , rn−2 = qnrn−1 + rn,

for some positive integer n, where rn = 0. Why does this algorithm eventually
terminate? Notice that a > b > r1 > r2 > . . . is a strictly decreasing sequence of
non-negative integers, so we eventually have to reach a point where one of the rn = 0,
and at that point the Euclidean algorithm terminates.

Let’s look at the last two equations. We have

rn−2 = qnrn−1 + 0, rn−3 = qn−1rn−2 + rn−1.

Since gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = . . . = gcd(rn−2, rn−1) = rn−1, we want
to rewrite rn−1 in the form ax + by, for some to-be-determined integers x, y. If we
just take the second to last equation in our list and rewrite try to get an expression
rn−1 = . . ., we obtain

rn−1 = rn−3 − qn−1rn−2.

Another way of writing this is

gcd(a, b) = xn−2rn−3 + yn−2rn−2,

where xn−2, yn−2 are integers; more specifically, xn−2 = 1, yn−2 = −qn−1.
Well, this isn’t exactly what we want, since we have written gcd(a, b) not as an

integral combination of a, b, but rather of rn−3, rn−2. But the third to last equation
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in our list is rn−4 = qn−2rn−3 + rn−2. How does this help? We can rearrange this
equation to rn−2 = rn−4 − qn−2rn−3. And then we can plug this expression for rn−2

back into the second to last equation to get

gcd(a, b) = xn−2rn−3 + yn−2(rn−4 − qn−2rn−3)

= yn−2rn−4 + (xn−2 − yn−2qn−2)rn−3

= xn−3rn−4 + yn−3rn−3,

where xn−3, yn−3 are some integers (which we can compute in terms of the preceding
pair xn−2, yn−2 and qn−2). This looks more messy (in a way, it is), but it expresses
gcd(a, b) as a multiple of rn−3 plus a multiple of rn−4. This looks like progress!
As a matter of fact, we can continually replace rn−k by using the equation rn−k =
rn−k−2 − qn−krn−k−1 to convert an expression involving rn−k−1, rn−k to one involving
rn−k−2, rn−k−1. If we continue doing this, we eventually will be able to write gcd(a, b)
as a multiple of a plus a multiple of b.

If this sounds kind of confusing, a few examples should make this algorithm more
clear.

Examples.

• Going back to our example where a = 994, b = 399, several applications of
Euclidean division gave the equations

994 = 399 · 2 + 196, 399 = 196 · 2 + 7, 196 = 7 · 24.

We found that gcd(994, 399) = 7. We want to find integers x, y such that
7 = 994x + 399y. The first step is to look at the second to last equation, and
rearrange it so that 7 = gcd(a, b) is on one side by itself:

7 = 399− 196 · (2).

The next step is to take the previous equation, and rewrite it so that its
remainder is on one side by itself:

196 = 994− 399 · (2).

We then substitute this expression for 196 into the previous equation:

7 = 399− (994− 399 · (2)) · (2).

This looks a bit messy, but we expand and gather terms so that the right
hand side looks like a multiple of 399 plus a multiple of 994:

7 = 994 · (−2) + 399 · (5).

So the integer pair x = −2, y = 5 solves the equation 7 = 994x + 399y in
integers.
• Let’s do a slightly more complicated example. Let a = 273, b = 94. The

Euclidean algorithm yields the following:
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273 = 94 · (2) + 85,

94 = 85 · (1) + 9,

85 = 9 · (9) + 4,

9 = 4 · (2) + 1,

4 = 1 · (4).

The last nonzero remainder was 1, so this tells us gcd(273, 94) = 1. Let’s find
a pair of integers x, y which solves 273x + 94y = 1:

1 = 9− 4 · (2).

Replacing 4 with 4 = 85− 9 · (9) gives

1 = 9− (85− 9 · (9)) · (2) = 85 · (−2) + 9 · (19).

Replacing 9 with 9 = 94− 85 gives

1 = 85 · (−2) + (94− 85) · (19) = 94 · (19) + 85 · (−21).

Finally, replacing 85 with 85 = 273− 94 · (2) gives

1 = 94 · (19) + (273− 94 · (2)) · (−21) = 273 · (−21) + 94 · (61).

So we find that x = −21, y = 61 solves 273x + 94y = 1. Notice that this
is probably a much more efficient way of solving 273x + 94y = 1 in integers
than, say, guess and check.

The fact that we can solve ax + by = gcd(a, b) in integers x, y is sometimes called
Bezout’s identity . This is useful not only for actually solving equations, but for
theoretical knowledge as well:

Theorem 1 (Theorem 1.8 of Chapter 1). Let a, b be non-zero integers, and c some
integer. Then the equation ax+ by = c has a pair of integer solutions x, y if and only
if gcd(a, b)|c.

Proof. If we want to prove an “if and only if” statement, there are really two things
to prove: the if direction and the only if direction. Let’s start by proving that if
ax+by = c has a pair of integer solutions x, y, then gcd(a, b)|c. We’ll let d = gcd(a, b).
Then d|a, b, by definition of gcd, so d|(ax + by). But then d|c, as desired.

Now let’s prove the “only if” direction: that if gcd(a, b)|c, then ax + by = c has a
pair of integer solutions. We’ve already seen that ax + by = d has a pair of integer
solutions x0, y0, say. So we have ax0 + by0 = d. Since d|c, we have c = qd for some
integer q. But then we can multiply our equation by q to get q(ax0 + by0) = d, or
a(qx0) + b(qy0) = dq = c. Then the pair x = qx0, y = qy0 give integer solutions to
ax + by = c, as desired. �

http://en.wikipedia.org/wiki/Bezout's_identity
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