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Quick links to definitions/theorems

• Euclid’s Lemma (important!)

1. A brief diversion: relatively prime numbers

Before continuing with the study of linear equations, we make a brief detour to
talk about some useful properties of relatively prime numbers and a number related
to gcds.

Recall that two integers a, b are relatively prime if gcd(a, b) = 1. At this point, we
know enough to prove some very important facts about relatively prime numbers:

Proposition 1. Let a, b be two relatively prime numbers, and let c be some integer.
If a | bc, then a | c.

Proof. We know that a | bc. Because a, b are relatively prime, we know that ax+by =
1 has (infinitely) many integer solutions. Select one of them. Multiply this equation
by c: acx + bcy = c. Notice that a | acx, and since a | bc by assumption, a | bcy.
Therefore, a | c. �

This simple result is of fundamental importance. Notice that we used our knowl-
edge about when ax+ by = d has solutions in an essential way to prove this proposi-
tion. Another important observation is that the above proposition requires that a, b
be relatively prime in order to be true. Can you think of an example where a, b are
not relatively prime, and where a | bc but a - c?

Finally, one special case of the above proposition deserves mention. Suppose a =
p is a prime number (a number divisible only by 1 and itself). Then the above
proposition can be rewritten in the following way:

Lemma 1 (Euclid’s Lemma). Let p be a prime, and let a, b be two integers. If p | ab,
then p | a or p | b.

Proof. If p | a, there is nothing to prove, so suppose p - a. Then gcd(a, p) = 1, since
the only divisors of p are 1 and p, while p does not divide a. An application of the
previous proposition shows that p | b. �
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http://en.wikipedia.org/wiki/Euclid's_lemma
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Example. This example shows that the original proposition (and Euclid’s Lemma)
can be false when their assumptions are not true. For instance, if a = 4, b = 6, so
that gcd(a, b) = 2, then we can choose c = 2. Then bc = 12, so a | bc, but a - c. This
example also works to show why p must be prime in Euclid’s Lemma; notice that
a = 4 is not a prime, yet a - b, c.

The previous proposition and lemma are one of the most important applications
of our knowledge of when ax+ by = d has integer solutions. It is well worth learning
their statements and proofs thoroughly. Here are several other useful propositions:

Proposition 2 (Corollary 1.11a of the text). If a, b are relatively prime integers, and
a | c, b | c, then ab | c.

Proof. Since gcd(a, b) = 1, there exist integers x, y such that ax + by = 1. Multiply
this equation by c : acx + bcy = c. Since b | c, (ab) | acx, and since a | c, (ab) | bcy.
Therefore (ab) | c. �

Proposition 3. [Exercise 1.8 of the text] Let a, b be two integers. If c is a divisor of
a, b, then c | gcd(a, b).

Proof. We know that there is a pair of integers x, y such that ax + by = gcd(a, b).
Since c | a, b, this implies that c | gcd(a, b). �

Proposition 4 (Corollary 1.10 of the text). Let a, b be two integers, and let m be a
positive integer. Then gcd(ma,mb) = m gcd(a, b).

Proof. Clearly m gcd(a, b) ≤ gcd(ma,mb), because m gcd(a, b) divides both ma and
mb. For the reverse inequality, again there are two integers x, y such that ax + by =
gcd(a, b). Multiplying this equation by m, we get max+mby = m gcd(a, b). However,
this is only possible if gcd(ma,mb) | m gcd(a, b), which in particular implies that
gcd(ma,mb) ≤ m gcd(a, b), as desired. �

Proposition 5 (Corollary 1.10 of the text). Let a, b be two integers, and let d | a, b.

Then gcd(
a

d
,
b

d
) =

gcd(a, b)

d
. In particular,

a

gcd(a, b)
and

b

gcd(a, b)
are relatively

prime.

Proof. Again, there exist integers x, y which satisfy ax + by = gcd(a, b). Divide this
equation by d:

a

d
x +

b

d
y =

gcd(a, b)

d
.

Since a/d, b/d are integers, this says that gcd(a/d, b/d) ≤ gcd(a, b)/d. On the other
hand since gcd(a, b) | a, b, gcd(a, b)/d | a/d, b/d. So gcd(a, b)/d ≤ gcd(a/d, b/d), and
therefore we have equality. �

As you can see, we are getting a lot of mileage out of the fact that ax+ by = d has
integer solutions x, y if and only if gcd(a, b) | d. Let’s conclude this section with an
example illustrating these propositions.

Examples.
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• We saw that gcd(994, 399) = 7. Therefore, the only common divisors of
994, 399 are 1, 7 (Proposition 3). As 994 = 7 · 142, 399 = 7 · 57, we also see
that gcd(142, 57) = 1. (Proposition 5)
• Proposition 2 can be false if gcd(a, b) 6= 1. For instance, if a = 6, b = 9, and
c = 18, then a | c, b | c, but ab = 54 - c.

2. Least common multiples

Recall that a multiple of an integer a is any number of the form na, where n ∈ Z.
Given two numbers a, b, we call the smallest positive integer which is both a multiple
of a, b the least common multiple of a, b. This number is often written lcm(a, b), or
sometimes [a, b], although again the latter notation can be ambiguous, since it also
means the closed interval from a to b. There is the obvious generalization of this
definition to a list of more than two numbers.

Example. Let a = 8, b = 12. Then the least common multiple of a, b is 24, since 24
is the smallest number that is a multiple of both a, b.

How are the lcm and gcd of two nonzero numbers a, b related? Notice that
gcd(8, 12) = 4, for example. A bit of experimentation will probably lead you to
the claim that gcd(a, b)lcm(a, b) = |a||b|. Let’s prove this:

Proof. We can assume that a, b are positive, since gcd, lcm are unchanged if we change
the signs of a, b. First notice that because gcd(a, b) | a, b, we know that a/ gcd(a, b)
is an integer, and similarly, b/ gcd(a, b) is an integer. Therefore,

a

gcd(a, b)
b =

b

gcd(a, b)
a =

ab

gcd(a, b)

shows that ab/(gcd(a, b)) is a common multiple of a, b. Therefore, lcm(a, b) ≤
ab/(gcd(a, b)).

Now we want to show that the opposite inequality is true. Suppose that c is the
least common multiple of a, b. Then we can write c = an = bm for some integers
n,m. In particular, this means that n | bm,m | an. First notice that gcd(n,m) = 1.
This must be true because if gcd(n,m) > 1, then we can divide both n,m by their
gcds to obtain new integers n′,m′, with (n′,m′) = 1, and an′ = bm′ is still a common
multiple of a, b which is smaller than c, contradicting the fact that c is the least
common multiple of a, b.

Since gcd(n,m) = 1, we can apply the first proposition we learned to see that
n | b,m | a. Let a1 = a/m, b1 = b/n. However, we know that an = bm, so this
tells us that a1 = b1. Call this number d. Notice that d is a common divisor of a, b.
Therefore, d ≤ gcd(a, b). But this implies that

ab

d
≥ ab

gcd(a, b)
.

Since ab/d = c, this shows that c ≥ ab/(gcd(a, b)) as desired. Putting the two
inequalities we’ve proved together, we have c = ab/(gcd(a, b)), as desired. �

Example. Going back to a = 994, b = 399, since gcd(994, 399) = 7, lcm(994, 399) =
994 · 399/7 = 56658.

http://en.wikipedia.org/wiki/Least_common_multiple
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We conclude with a proposition which is the mirror image of Proposition 3.

Proposition 6 (Exercise 1.14 of the text). Let c be a common multiple of a, b. Then
c is a multiple of lcm(a, b).

Proof. Write ` = lcm(a, b). Since c ≥ `, a Euclidean division of c by ` gives an
equation c = `q + r, where 0 ≤ r < `. But since a, b | c, `, this means a, b | r, which
shows that r is a common multiple of a, b. Since ` is the least common multiple, we
must have r = 0, which means that c is a multiple of ` = lcm(a, b), as desired. �

The converse to the above proposition is obviously true – that is, any multiple of
lcm(a, b) is itself a common multiple of a and b. Let’s conclude by going back to a
familiar example.

Example. We calculated that lcm(994, 399) = 56658. Therefore any common mul-
tiple of 994 and 399 is a multiple of 56658.

3. Finding all solutions to ax + by = c

The Euclidean algorithm gives us a way to find a pair of integer solutions x, y to
ax + by = c, as long as gcd(a, b) | c. However, it would be ideal to know how to find
all the solutions to this equation, instead of just one. The following proposition tells
us just how to do this:

Proposition 7 (Theorem 1.13 of the text). Let a, b be nonzero integers, and c an
integer which is a multiple of gcd(a, b) = d. Let x0, y0 be one pair of integer solutions
to ax + by = c. Then the set of all integer solutions x, y to the equation ax + by = c
has the form

(1) x = x0 +
b

d
n, y = y0 −

a

d
n,

where n is any integer. (In particular when n = 0 we get the initial pair x0, y0.)

Proof. We will begin by checking that every pair of integers x, y satisfying Equation 1
satisfies ax + by = c. Plug in the two equations from Equation 1 into ax + by = c:

a

(
x0 +

b

d
n

)
+ b

(
y0 −

a

d
n
)

= ax0 +
ab

d
n + by0 −

ab

d
n = ax0 + by0 = c.

In the last equality, we used the fact that x0, y0 was a solution to ax + by = c.
We now want to prove the converse statement, that any solution x, y is of the form

given by Equation 1. So suppose x, y are integers such that ax + by = c. Since
ax0 + by0 = c as well, we have

ax0 + by0 = ax + by, or a(x0 − x) = b(y − y0).

Both sides are divisible by d = gcd(a, b), so divide both sides of this equation by d:

a

d
(x0 − x) =

b

d
(y − y0).
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Recall that a/d, b/d are relatively prime. Since a/d, b/d are relatively prime and
(b/d) | (a/d)(x − x0), we must have (b/d) | (x − x0). In other words, there is an
integer n such that

b

d
n = x− x0, or x = x0 +

b

d
n.

Plugging in this expression for x into the previous equation, we obtain

a

d

−b
d
n =

b

d
(y − y0).

Solving for y, we get

y = y0 −
a

d
n.

�

Examples.

• Going to our favorite example of a = 994, b = 399, we found the solution x =
−2, y = 5 to 994x + 399y = 7. Since gcd(a, b) = d = 7, and a/d = 142, b/d =
57, the previous proposition tells us that every solution to 994x+ 399y = 7 is
given by x = −2 + 57n, y = 5− 142n, where n ∈ Z.
• Notice that this proposition works on the equation ax + by = c even when c

is larger than gcd(a, b). For example, consider the equation 4x + 6y = 4. It
is obvious that x = 1, y = 0 gives an integer solution. We have a = 4, b =
6, gcd(a, b) = d = 2, so a/d = 2, b/d = 3. Then the previous proposition tells
us that every pair of integer solutions has the form x = 1 + 3n, y = −2n.
• In general, it is easy to check your answer by plugging in your expressions for
x, y into the equation ax + by = c and checking that you get a true equation.
In particular, any ns which appear should end up canceling out.
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