MATH 25 CLASS 5 NOTES, SEP 302011

Contents

1. A brief diversion: relatively prime numbers 1
2. Least common multiples 3
3. Finding all solutions to $a x+b y=c$ 4

Quick links to definitions/theorems

- Euclid's Lemma (important!)

1. A brief diversion: Relatively prime numbers

Before continuing with the study of linear equations, we make a brief detour to talk about some useful properties of relatively prime numbers and a number related to gcds.

Recall that two integers a, b are relatively prime if $\operatorname{gcd}(a, b)=1$. At this point, we know enough to prove some very important facts about relatively prime numbers:

Proposition 1. Let a, b be two relatively prime numbers, and let c be some integer. If $a \mid b c$, then $a \mid c$.
Proof. We know that $a \mid b c$. Because a, b are relatively prime, we know that $a x+b y=$ 1 has (infinitely) many integer solutions. Select one of them. Multiply this equation by $c: a c x+b c y=c$. Notice that $a \mid a c x$, and since $a \mid b c$ by assumption, $a \mid b c y$. Therefore, $a \mid c$.

This simple result is of fundamental importance. Notice that we used our knowledge about when $a x+b y=d$ has solutions in an essential way to prove this proposition. Another important observation is that the above proposition requires that a, b be relatively prime in order to be true. Can you think of an example where a, b are not relatively prime, and where $a \mid b c$ but $a \nmid c$?

Finally, one special case of the above proposition deserves mention. Suppose $a=$ p is a prime number (a number divisible only by 1 and itself). Then the above proposition can be rewritten in the following way:

Lemma 1 (Euclid's Lemma). Let p be a prime, and let a, b be two integers. If $p \mid a b$, then $p \mid a$ or $p \mid b$.
Proof. If $p \mid a$, there is nothing to prove, so suppose $p \nmid a$. Then $\operatorname{gcd}(a, p)=1$, since the only divisors of p are 1 and p, while p does not divide a. An application of the previous proposition shows that $p \mid b$.

Example. This example shows that the original proposition (and Euclid's Lemma) can be false when their assumptions are not true. For instance, if $a=4, b=6$, so that $\operatorname{gcd}(a, b)=2$, then we can choose $c=2$. Then $b c=12$, so $a \mid b c$, but $a \nmid c$. This example also works to show why p must be prime in Euclid's Lemma; notice that $a=4$ is not a prime, yet $a \nmid b, c$.

The previous proposition and lemma are one of the most important applications of our knowledge of when $a x+b y=d$ has integer solutions. It is well worth learning their statements and proofs thoroughly. Here are several other useful propositions:

Proposition 2 (Corollary 1.11a of the text). If a, b are relatively prime integers, and $a|c, b| c$, then $a b \mid c$.

Proof. Since $\operatorname{gcd}(a, b)=1$, there exist integers x, y such that $a x+b y=1$. Multiply this equation by $c: a c x+b c y=c$. Since $b|c,(a b)| a c x$, and since $a|c,(a b)| b c y$. Therefore ($a b$) $\mid c$.

Proposition 3. [Exercise 1.8 of the text] Let a, b be two integers. If c is a divisor of a, b, then $c \mid \operatorname{gcd}(a, b)$.

Proof. We know that there is a pair of integers x, y such that $a x+b y=\operatorname{gcd}(a, b)$. Since $c \mid a, b$, this implies that $c \mid \operatorname{gcd}(a, b)$.

Proposition 4 (Corollary 1.10 of the text). Let a, b be two integers, and let m be a positive integer. Then $\operatorname{gcd}(m a, m b)=m \operatorname{gcd}(a, b)$.
Proof. Clearly $m \operatorname{gcd}(a, b) \leq \operatorname{gcd}(m a, m b)$, because $m \operatorname{gcd}(a, b)$ divides both $m a$ and $m b$. For the reverse inequality, again there are two integers x, y such that $a x+b y=$ $\operatorname{gcd}(a, b)$. Multiplying this equation by m, we get $\max +m b y=m \operatorname{gcd}(a, b)$. However, this is only possible if $\operatorname{gcd}(m a, m b) \mid m \operatorname{gcd}(a, b)$, which in particular implies that $\operatorname{gcd}(m a, m b) \leq m \operatorname{gcd}(a, b)$, as desired.
Proposition 5 (Corollary 1.10 of the text). Let a, b be two integers, and let $d \mid a, b$. Then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=\frac{\operatorname{gcd}(a, b)}{d}$. In particular, $\frac{a}{\operatorname{gcd}(a, b)}$ and $\frac{b}{\operatorname{gcd}(a, b)}$ are relatively prime.

Proof. Again, there exist integers x, y which satisfy $a x+b y=\operatorname{gcd}(a, b)$. Divide this equation by d :

$$
\frac{a}{d} x+\frac{b}{d} y=\frac{\operatorname{gcd}(a, b)}{d}
$$

Since $a / d, b / d$ are integers, this says that $\operatorname{gcd}(a / d, b / d) \leq \operatorname{gcd}(a, b) / d$. On the other hand since $\operatorname{gcd}(a, b)|a, b, \operatorname{gcd}(a, b) / d| a / d, b / d$. So $\operatorname{gcd}(a, b) / d \leq \operatorname{gcd}(a / d, b / d)$, and therefore we have equality.

As you can see, we are getting a lot of mileage out of the fact that $a x+b y=d$ has integer solutions x, y if and only if $\operatorname{gcd}(a, b) \mid d$. Let's conclude this section with an example illustrating these propositions.

Examples.

- We saw that $\operatorname{gcd}(994,399)=7$. Therefore, the only common divisors of 994,399 are 1,7 (Proposition 3). As $994=7 \cdot 142,399=7 \cdot 57$, we also see that $\operatorname{gcd}(142,57)=1$. (Proposition 5)
- Proposition 2 can be false if $\operatorname{gcd}(a, b) \neq 1$. For instance, if $a=6, b=9$, and $c=18$, then $a|c, b| c$, but $a b=54 \nmid c$.

2. LeAst common multiples

Recall that a multiple of an integer a is any number of the form $n a$, where $n \in \mathbb{Z}$. Given two numbers a, b, we call the smallest positive integer which is both a multiple of a, b the least common multiple of a, b. This number is often written $\operatorname{lcm}(a, b)$, or sometimes $[a, b]$, although again the latter notation can be ambiguous, since it also means the closed interval from a to b. There is the obvious generalization of this definition to a list of more than two numbers.

Example. Let $a=8, b=12$. Then the least common multiple of a, b is 24 , since 24 is the smallest number that is a multiple of both a, b.

How are the lcm and gcd of two nonzero numbers a, b related? Notice that $\operatorname{gcd}(8,12)=4$, for example. A bit of experimentation will probably lead you to the claim that $\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=|a||b|$. Let's prove this:

Proof. We can assume that a, b are positive, since gcd, lcm are unchanged if we change the signs of a, b. First notice that because $\operatorname{gcd}(a, b) \mid a, b$, we know that $a / \operatorname{gcd}(a, b)$ is an integer, and similarly, $b / \operatorname{gcd}(a, b)$ is an integer. Therefore,

$$
\frac{a}{\operatorname{gcd}(a, b)} b=\frac{b}{\operatorname{gcd}(a, b)} a=\frac{a b}{\operatorname{gcd}(a, b)}
$$

shows that $a b /(\operatorname{gcd}(a, b))$ is a common multiple of a, b. Therefore, $\operatorname{lcm}(a, b) \leq$ $a b /(\operatorname{gcd}(a, b))$.

Now we want to show that the opposite inequality is true. Suppose that c is the least common multiple of a, b. Then we can write $c=a n=b m$ for some integers n, m. In particular, this means that $n|b m, m| a n$. First notice that $\operatorname{gcd}(n, m)=1$. This must be true because if $\operatorname{gcd}(n, m)>1$, then we can divide both n, m by their gcds to obtain new integers n^{\prime}, m^{\prime}, with $\left(n^{\prime}, m^{\prime}\right)=1$, and $a n^{\prime}=b m^{\prime}$ is still a common multiple of a, b which is smaller than c, contradicting the fact that c is the least common multiple of a, b.

Since $\operatorname{gcd}(n, m)=1$, we can apply the first proposition we learned to see that $n|b, m| a$. Let $a_{1}=a / m, b_{1}=b / n$. However, we know that $a n=b m$, so this tells us that $a_{1}=b_{1}$. Call this number d. Notice that d is a common divisor of a, b. Therefore, $d \leq \operatorname{gcd}(a, b)$. But this implies that

$$
\frac{a b}{d} \geq \frac{a b}{\operatorname{gcd}(a, b)}
$$

Since $a b / d=c$, this shows that $c \geq a b /(\operatorname{gcd}(a, b))$ as desired. Putting the two inequalities we've proved together, we have $c=a b /(\operatorname{gcd}(a, b))$, as desired.
Example. Going back to $a=994, b=399$, since $\operatorname{gcd}(994,399)=7, \operatorname{lcm}(994,399)=$ $994 \cdot 399 / 7=56658$.

We conclude with a proposition which is the mirror image of Proposition 3 .
Proposition 6 (Exercise 1.14 of the text). Let c be a common multiple of a, b. Then c is a multiple of $\operatorname{lcm}(a, b)$.

Proof. Write $\ell=\operatorname{lcm}(a, b)$. Since $c \geq \ell$, a Euclidean division of c by ℓ gives an equation $c=\ell q+r$, where $0 \leq r<\ell$. But since $a, b \mid c, \ell$, this means $a, b \mid r$, which shows that r is a common multiple of a, b. Since ℓ is the least common multiple, we must have $r=0$, which means that c is a multiple of $\ell=\operatorname{lcm}(a, b)$, as desired.

The converse to the above proposition is obviously true - that is, any multiple of $\operatorname{lcm}(a, b)$ is itself a common multiple of a and b. Let's conclude by going back to a familiar example.

Example. We calculated that $\operatorname{lcm}(994,399)=56658$. Therefore any common multiple of 994 and 399 is a multiple of 56658 .

3. Finding all solutions to $a x+b y=c$

The Euclidean algorithm gives us a way to find a pair of integer solutions x, y to $a x+b y=c$, as long as $\operatorname{gcd}(a, b) \mid c$. However, it would be ideal to know how to find all the solutions to this equation, instead of just one. The following proposition tells us just how to do this:

Proposition 7 (Theorem 1.13 of the text). Let a, b be nonzero integers, and c an integer which is a multiple of $\operatorname{gcd}(a, b)=d$. Let x_{0}, y_{0} be one pair of integer solutions to $a x+b y=c$. Then the set of all integer solutions x, y to the equation $a x+b y=c$ has the form

$$
\begin{equation*}
x=x_{0}+\frac{b}{d} n, y=y_{0}-\frac{a}{d} n, \tag{1}
\end{equation*}
$$

where n is any integer. (In particular when $n=0$ we get the initial pair x_{0}, y_{0}.)
Proof. We will begin by checking that every pair of integers x, y satisfying Equation 1 satisfies $a x+b y=c$. Plug in the two equations from Equation 1 into $a x+b y=c$:

$$
a\left(x_{0}+\frac{b}{d} n\right)+b\left(y_{0}-\frac{a}{d} n\right)=a x_{0}+\frac{a b}{d} n+b y_{0}-\frac{a b}{d} n=a x_{0}+b y_{0}=c .
$$

In the last equality, we used the fact that x_{0}, y_{0} was a solution to $a x+b y=c$.
We now want to prove the converse statement, that any solution x, y is of the form given by Equation 11. So suppose x, y are integers such that $a x+b y=c$. Since $a x_{0}+b y_{0}=c$ as well, we have

$$
a x_{0}+b y_{0}=a x+b y, \text { or } a\left(x_{0}-x\right)=b\left(y-y_{0}\right) .
$$

Both sides are divisible by $d=\operatorname{gcd}(a, b)$, so divide both sides of this equation by d :

$$
\frac{a}{d}\left(x_{0}-x\right)=\frac{b}{d}\left(y-y_{0}\right) .
$$

Recall that $a / d, b / d$ are relatively prime. Since $a / d, b / d$ are relatively prime and $(b / d) \mid(a / d)\left(x-x_{0}\right)$, we must have $(b / d) \mid\left(x-x_{0}\right)$. In other words, there is an integer n such that

$$
\frac{b}{d} n=x-x_{0}, \text { or } x=x_{0}+\frac{b}{d} n .
$$

Plugging in this expression for x into the previous equation, we obtain

$$
\frac{a}{d} \frac{-b}{d} n=\frac{b}{d}\left(y-y_{0}\right) .
$$

Solving for y, we get

$$
y=y_{0}-\frac{a}{d} n
$$

Examples.

- Going to our favorite example of $a=994, b=399$, we found the solution $x=$ $-2, y=5$ to $994 x+399 y=7$. Since $\operatorname{gcd}(a, b)=d=7$, and $a / d=142, b / d=$ 57 , the previous proposition tells us that every solution to $994 x+399 y=7$ is given by $x=-2+57 n, y=5-142 n$, where $n \in \mathbb{Z}$.
- Notice that this proposition works on the equation $a x+b y=c$ even when c is larger than $\operatorname{gcd}(a, b)$. For example, consider the equation $4 x+6 y=4$. It is obvious that $x=1, y=0$ gives an integer solution. We have $a=4, b=$ $6, \operatorname{gcd}(a, b)=d=2$, so $a / d=2, b / d=3$. Then the previous proposition tells us that every pair of integer solutions has the form $x=1+3 n, y=-2 n$.
- In general, it is easy to check your answer by plugging in your expressions for x, y into the equation $a x+b y=c$ and checking that you get a true equation. In particular, any $n s$ which appear should end up canceling out.

