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1. A BRIEF DIVERSION: RELATIVELY PRIME NUMBERS

Before continuing with the study of linear equations, we make a brief detour to
talk about some useful properties of relatively prime numbers and a number related
to geds.

Recall that two integers a, b are relatively prime if ged(a,b) = 1. At this point, we
know enough to prove some very important facts about relatively prime numbers:

Proposition 1. Let a,b be two relatively prime numbers, and let ¢ be some integer.
If a | be, then a | c.

Proof. We know that a | bc. Because a, b are relatively prime, we know that ax+by =
1 has (infinitely) many integer solutions. Select one of them. Multiply this equation
by ¢: acx + bey = c¢. Notice that a | acx, and since a | be by assumption, a | bey.
Therefore, a | c. O

This simple result is of fundamental importance. Notice that we used our knowl-
edge about when ax + by = d has solutions in an essential way to prove this proposi-
tion. Another important observation is that the above proposition requires that a, b
be relatively prime in order to be true. Can you think of an example where a, b are
not relatively prime, and where a | bc but a { ¢?

Finally, one special case of the above proposition deserves mention. Suppose a =
p is a prime number (a number divisible only by 1 and itself). Then the above
proposition can be rewritten in the following way:

Lemma 1 (Euclid’s Lemma). Let p be a prime, and let a,b be two integers. If p | ab,
thenp|a orp|b.

Proof. 1f p | a, there is nothing to prove, so suppose p t a. Then ged(a,p) = 1, since
the only divisors of p are 1 and p, while p does not divide a. An application of the

previous proposition shows that p | b. O
1
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Example. This example shows that the original proposition (and FEuclid’s Lemma)
can be false when their assumptions are not true. For instance, if a = 4,b = 6, so
that ged(a, b) = 2, then we can choose ¢ = 2. Then bc = 12, so a | be, but a 1 ¢. This
example also works to show why p must be prime in FEuclid’s Lemma; notice that
a =4 is not a prime, yet a1 b, c.

The previous proposition and lemma are one of the most important applications
of our knowledge of when ax + by = d has integer solutions. It is well worth learning
their statements and proofs thoroughly. Here are several other useful propositions:

Proposition 2 (Corollary 1.11a of the text). If a,b are relatively prime integers, and
alecbl|ec, then ab|ec.

Proof. Since ged(a,b) = 1, there exist integers z,y such that ax + by = 1. Multiply
this equation by ¢ : acx + bcy = ¢. Since b | ¢, (ab) | acx, and since a | ¢, (ab) | bey.
Therefore (ab) | c.

Proposition 3. [Ezercise 1.8 of the text] Let a,b be two integers. If ¢ is a divisor of
a,b, then c | ged(a,b).

Proof. We know that there is a pair of integers z,y such that ax + by = ged(a,b).
Since ¢ | a, b, this implies that ¢ | ged(a, b). O

Proposition 4 (Corollary 1.10 of the text). Let a,b be two integers, and let m be a
positive integer. Then ged(ma, mb) = mged(a, b).

Proof. Clearly mged(a,b) < ged(ma, mb), because m ged(a, b) divides both ma and
mb. For the reverse inequality, again there are two integers x,y such that ax 4+ by =
ged(a, b). Multiplying this equation by m, we get max+mby = m ged(a, b). However,
this is only possible if ged(ma, mb) | mged(a,b), which in particular implies that
ged(ma, mb) < mged(a,b), as desired. O

Proposition 5 (Corollary 1.10 of the text). Let a,b be two integers, and let d | a,b.
a b ged(a, b) a

Th d(=,-) = I ticul d
en ge (d’d) i n particular, acd(a. ) an acd(a. )

are relatively
prime.

Proof. Again, there exist integers x,y which satisfy ax + by = ged(a, b). Divide this
equation by d:

%x N gy _ gcdga,b)'
Since a/d,b/d are integers, this says that ged(a/d,b/d) < ged(a,b)/d. On the other
hand since ged(a, b) | a,b, ged(a,b)/d | a/d,b/d. So ged(a,b)/d < ged(a/d,b/d), and
therefore we have equality. 0

As you can see, we are getting a lot of mileage out of the fact that ax + by = d has
integer solutions z,y if and only if ged(a, b) | d. Let’s conclude this section with an
example illustrating these propositions.

Examples.
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e We saw that gcd(994,399) = 7. Therefore, the only common divisors of
994,399 are 1,7 (Proposition 3). As 994 = 7 - 142,399 = 7 - 57, we also see
that ged(142,57) = 1. (Proposition 5)

e Proposition 2 can be false if ged(a,b) # 1. For instance, if @ = 6,0 = 9, and
c=18,thena|cb|c, but ab=541c.

2. LEAST COMMON MULTIPLES

Recall that a multiple of an integer a is any number of the form na, where n € Z.
Given two numbers a, b, we call the smallest positive integer which is both a multiple
of a,b the least common multiple of a,b. This number is often written lem(a,b), or
sometimes [a, b, although again the latter notation can be ambiguous, since it also
means the closed interval from a to b. There is the obvious generalization of this
definition to a list of more than two numbers.

Example. Let a = 8,b = 12. Then the least common multiple of a, b is 24, since 24
is the smallest number that is a multiple of both a, b.

How are the lem and gcd of two nonzero numbers a,b related? Notice that
ged(8,12) = 4, for example. A bit of experimentation will probably lead you to
the claim that ged(a, b)lem(a, b) = |a||b|. Let’s prove this:

Proof. We can assume that a, b are positive, since ged, lem are unchanged if we change
the signs of a,b. First notice that because ged(a,b) | a,b, we know that a/ged(a,b)
is an integer, and similarly, b/ ged(a, b) is an integer. Therefore,

a b ab

b pu
ged(a, b) ged(a, b ged(a, b)

shows that ab/(ged(a,b)) is a common multiple of a,b. Therefore, lem(a,b) <
ab/(ged(a,b)).

Now we want to show that the opposite inequality is true. Suppose that c is the
least common multiple of a,b. Then we can write ¢ = an = bm for some integers
n, m. In particular, this means that n | bm,m | an. First notice that ged(n,m) = 1.
This must be true because if ged(n,m) > 1, then we can divide both n,m by their
geds to obtain new integers n’, m’, with (n’;m’) = 1, and an’ = bm/’ is still a common
multiple of a,b which is smaller than ¢, contradicting the fact that ¢ is the least
common multiple of a, b.

Since ged(n,m) = 1, we can apply the first proposition we learned to see that
n | bm | a Let ag = a/m,b; = b/n. However, we know that an = bm, so this
tells us that a; = b;. Call this number d. Notice that d is a common divisor of a, b.
Therefore, d < ged(a,b). But this implies that

4T

ab ab

>

d — ged(a,b)
Since ab/d = ¢, this shows that ¢ > ab/(gcd(a,b)) as desired. Putting the two
inequalities we’ve proved together, we have ¢ = ab/(ged(a, b)), as desired. O

Example. Going back to a = 994, b = 399, since ged(994,399) = 7,1em(994, 399) =
994 - 399/7 = 56658.


http://en.wikipedia.org/wiki/Least_common_multiple
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We conclude with a proposition which is the mirror image of Proposition

Proposition 6 (Exercise 1.14 of the text). Let ¢ be a common multiple of a,b. Then
¢ is a multiple of lem(a,b).

Proof. Write ¢ = lcm(a,b). Since ¢ > ¢, a Euclidean division of ¢ by ¢ gives an
equation ¢ = g + r, where 0 < r < {. But since a,b | ¢, ¢, this means a,b | r, which
shows that r is a common multiple of a,b. Since £ is the least common multiple, we
must have r = 0, which means that ¢ is a multiple of ¢ = lem(a, b), as desired. O

The converse to the above proposition is obviously true — that is, any multiple of
lem(a, b) is itself a common multiple of a and b. Let’s conclude by going back to a
familiar example.

Example. We calculated that lem(994,399) = 56658. Therefore any common mul-
tiple of 994 and 399 is a multiple of 56658.

3. FINDING ALL SOLUTIONS TO ax + by = ¢

The Euclidean algorithm gives us a way to find a pair of integer solutions z,y to
ax + by = ¢, as long as ged(a,b) | c. However, it would be ideal to know how to find
all the solutions to this equation, instead of just one. The following proposition tells
us just how to do this:

Proposition 7 (Theorem 1.13 of the text). Let a,b be nonzero integers, and c¢ an
integer which is a multiple of ged(a,b) = d. Let xq, yo be one pair of integer solutions
to ax + by = c. Then the set of all integer solutions x,y to the equation ax + by = ¢
has the form

b
(1) x:$0+8n7y:y0_gn7

where n is any integer. (In particular when n = 0 we get the initial pair xq,yo.)

Proof. We will begin by checking that every pair of integers z, y satisfying Equation
satisfies ax + by = ¢. Plug in the two equations from Equation (1| into az + by = ¢:

.0 +b (30— 5n) = by — = awg + by =
a\l Xy dn Yo dn = aXg d?’L Yo dn—axg Yo = C.

In the last equality, we used the fact that xg,y9 was a solution to ax + by = c.

We now want to prove the converse statement, that any solution z, y is of the form
given by Equation [Il So suppose z,y are integers such that ax 4+ by = c¢. Since
axg + byg = ¢ as well, we have

axg + byo = ax + by, or a(rg — ) = b(y — o).
Both sides are divisible by d = ged(a, b), so divide both sides of this equation by d:

wy— ) = oy~ o).
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Recall that a/d,b/d are relatively prime. Since a/d,b/d are relatively prime and
(b/d) | (a/d)(z — x0), we must have (b/d) | (x — xp). In other words, there is an
integer n such that

b
N = — Xo,0I T =X+ —=N.

d d

Plugging in this expression for z into the previous equation, we obtain

a=b b (v — vo)
Solving for y, we get

Y=Y — -n.

Examples.

e Going to our favorite example of a = 994, b = 399, we found the solution x =
—2,y =5 to 994x + 399y = 7. Since ged(a,b) =d =7, and a/d = 142,b/d =
57, the previous proposition tells us that every solution to 994z + 399y = 7 is
given by x = =2+ 57n,y = 5 — 142n, where n € Z.

e Notice that this proposition works on the equation ax + by = ¢ even when ¢
is larger than ged(a,b). For example, consider the equation 4x + 6y = 4. It
is obvious that z = 1,y = 0 gives an integer solution. We have a = 4,0 =
6,gcd(a,b) =d=2,s0 a/d=2,b/d = 3. Then the previous proposition tells
us that every pair of integer solutions has the form x =1+ 3n,y = —2n.

e In general, it is easy to check your answer by plugging in your expressions for
x,1y into the equation ax + by = c and checking that you get a true equation.
In particular, any ns which appear should end up canceling out.
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