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1. On the number of primes

Say you write down the first few primes: 2, 3, 5, 7, . . .. A natural question to ask is
whether there are finitely or infinitely many primes. The following theorem of Euclid
provides the answer, and probably has the best proof in all of mathematics.

Theorem 1 (Euclid’s Theorem). There are infinitely many primes.

Proof. We will proceed by contradiction. Suppose that there are only finitely many
primes, say p1 = 2, . . . , pn. Consider the number N = p1p2 . . . pn + 1. Notice that
this number is larger than every prime on our list of primes, so is not itself a prime.
Then it must be divisible by a prime number (it has prime factorization, after all).
But notice that because pi|p1p2 . . . pn, but pi - 1, we must have pi - N for all i. This is
a contradiction; hence our original assumption was incorrect and there are infinitely
many primes. �

What an elegant argument! It is short, but captures perfectly the idea required to
prove that there are infinitely many primes. It proves a wonderful mathematical fact,
and as a matter of fact can be modified to provide proofs of slightly more difficult
statements. For instance, we can use a similar argument to prove the following:

Theorem 2. There are infinitely many primes which leave a remainder of 3 when
divided by 4; ie, are of the form 4n+ 3, for n an integer.

Proof. Suppose there were only finitely many primes p1 = 3, . . . , pk which are of the
form 4n + 3. Consider the number N = 4p1 . . . pk − 1. This number is of the form
4n + 3. It is also larger than every p1, . . . , pk, so cannot be a prime. Therefore, it
is divisible by a prime. However, pi - N , for the same reason as before, because
pi - 1. So every prime which divides N must be of the form 4n + 1. But notice
any two numbers of the form 4n + 1 have a product also of the form 4n + 1, since
(4n+ 1)(4m+ 1) = 4(4nm+m+ n) + 1. Therefore, N , which is a number a product
of primes solely of the form 4n+1, must also have form 4n+1, which contradicts the
definition of N . Therefore our original assumption was wrong and there are infinitely
many primes of the form 4n+ 3. �
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It is just as important to realize the limitations of the technique in a proof as it is
to maximize the applications of that technique. In this particular example, why does
a proof of this flavor fail for primes of the form 4n+ 1?

The previous theorem leads us to ask a natural question. Suppose we look at a
generic arithmetic progression qn+ a, where q > 0, a are fixed integers, and we vary
n over non-negative integers. For instance, if q = 7, a = 3, then we are looking at the
progression 3, 10, 17, 24, 31, . . .. Are there infinitely many primes in this arithmetic
progression? (The above theorem is this result for q = 4, a = 3.)

Well, if gcd(q, a) > 1, then there cannot be infinitely many primes in this arithmetic
progression, since we always have gcd(q, a)|(qn + a), and the only way this could
possibly be prime is if gcd(q, a) = qn + a, which would only be true for at most one
element in the sequence. For instance, if q = 6, a = 2, then the arithmetic progression
in question is 2, 8, 14, 20, 26, . . ., and the only prime element is 2.

But suppose this obvious ‘obstruction’ is not an issue; that is, gcd(q, a) = 1. What
can we say then? The following theorem provides an answer, but its proof is beyond
the scope of this class. The proof brings in ideas from Fourier analysis and complex
analysis, and so is a striking application of different ideas from math in number
theory.

Theorem 3 (Dirichlet’s Theorem on primes in arithmetic progressions). Suppose
gcd(q, a) = 1. Then there are infinitely many primes in the arithmetic progression
qn+ a.

A very interesting result complimentary to this theorem has been proven recently in
2004 by Ben Green and Terence Tao. The length 4 arithmetic progression 5, 11, 17, 23
is an arithmetic progression which consists only of primes. Green and Tao proved the
following striking theorem, whose proof is difficult and amazingly original, bringing
in ideas from ergodic theory in a decisive way:

Theorem 4 (Green-Tao theorem). Let k be any positive integer. Then there exists
an arithmetic progression of length k all of whose elements are prime. In particular,
given any positive integer k, there are infinitely many arithmetic progression of length
k all of whose elements are prime.

As an indication of how amazing this theorem was when it was first announced,
prior to their theorem it had only been known that there were infinitely many arith-
metic progressions of length 3. The corresponding statement was unknown for length
4 arithmetic progressions.

Back to slightly more classical results. We know there are infinitely many primes.
Suppose we want more information. For example, do primes constitute the ‘bulk’ of
numbers, in some suitable sense? Or are they relatively rare? Let π(x) be the number
of primes less than or equal to x. For instance, π(2) = 1, π(4) = 2, π(10.5) = 4. Then
we can ask questions about how π(x) behaves as x→∞.

Euclid’s Theorem simply says that π(x) → ∞ as x → ∞. But we can ask for
more specific information. If f(x), g(x) are two functions on the real line, we say that
f(x) ∼ g(x) (f(x) is asymptotic to g(x)) if

lim
x→∞

f(x)

g(x)
= 1.

http://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions
http://en.wikipedia.org/wiki/Green-Tao
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The following theorem provides a first-order answer to the question of the quanti-
tative behavior of π(x).

Theorem 5 (The prime number theorem).

π(x) ∼ x

log x
∼

∫ x

2

1

log t
dt.

This theorem has a distinguished history. Gauss noticed, apparently at the age of
14, that the proportion of primes of size about x was ‘more or less’ 1/ log x. From
this, it is not too hard to conjecture that perhaps π(x) can be well-approximated by
the function li(x) =

∫ x

2
1

log t
dt.

However, Gauss was unable to prove this theorem. That had to wait until the
work of Hadamard and de la Vallee Poisson. They used complex analysis (calculus
of functions of a complex variable) to prove the prime number theorem in 1896.

Let’s think a bit more about what the prime number theorem says. First, we
introduce some notation computer science students may be familiar with. We say
that f(x) = O(g(x)), the big-O notation, if f(x) ≤ Cg(x) for some constant C, for all
x large, say. This says that f(x) is no larger in order of magnitude (though perhaps
equal to) than g(x). For instance, x = O(x2), en = O(n!), 1/x = O(1). We say that

f(x) = o(g(x)), the little-o notation, if lim
x→∞

f(x)

g(x)
= 0. This tells us that f(x) is of

smaller order of magnitude than g(x).
The logarithm function is very common in number theory. Notice that log x = o(xδ)

for any δ > 0, by say L’Hopital’s rule. In words, this is simply the fact that log x
grows slower than any power of x. Therefore, x1−δ = O(x/ log x) for all δ > 0. In
other words, x/ log x grows faster than any power of x just less than 1.

This has the practical impact of showing that there are quite a few prime numbers
less than x, since log x is slow growing. We will see that this makes a naive approach
to primality testing and factorization very slow.

If f(x) ∼ g(x), then f(x) − g(x) = o(f(x)) = o(g(x)). In the case of the prime
number theorem, this tells us that

R(x) := π(x)− li(x)

is o(x/ log x). A natural question is what the true order of magnitude of R(x) is.
Riemann was perhaps the first to realize that this question could be answered by
considering the behavior of his Riemann zeta function, defined by the series

ζ(s) =
∞∑
n=1

1

ns
.

Any calculus student will recognize this as the p-series, at least when s is real, and
the integral test tells us that this is convergent when s > 1. Riemann realized that
this function could be defined for complex s, and that the series representation is
convergent when <s > 1. This is not difficult, but Riemann also realized the much
deeper insight that this function could be analytically continued to the entire complex
plane, and he proved that there was a functional equation relating the values of ζ(s)
to those of ζ(1− s). He then showed that the distribution of the prime numbers was
very closely related to the position of the zeros of ζ(s) in the critical strip 0 < <s < 1.
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However, the proofs of all these facts require knowledge of the basics of complex
analysis, so we will not see them in this class. In any case, the first proof of the
prime number theorem involved showing that there are no zeros of ζ(s) on <s = 1.
The essentially optimal upper bound on R(x) requires showing that all the zeros of
ζ(s) in the critical strip actually lie on the center line <s = 1/2. This is known as
the Riemann hypothesis and is probably the most important unsolved problem in
mathematics today. The Riemann hypothesis implies lots of statements in number
theory, but for π(x), the Riemann hypothesis implies that R(x) = O(

√
x log x). This

is much smaller in order of magnitude than π(x) ∼ x/ log x, since we are almost
gaining an entire

√
x.

Unfortunately, the modern state of knowledge of R(x) is rather poor. For instance,
it is still unknown if R(x) = O(x1−δ), for any δ > 0. Any result of this kind would
probably be a monumental breakthrough in number theory, but no techniques show
any real promise of achieving a result of this kind in the near future.
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