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1. Prime number races

We proved that there were infinitely many primes of the form 4k + 3, and we said
that there were infinitely many primes of the form 4k + 1, and that we would give
a proof of this fact later in this class. Recall that π(x) is the number of primes less
than or equal to x; let π(x; q, a) be the number of primes less than or equal to x
of the form qk + a. Based on what we talked about last class, this function is only
interesting when gcd(a, q) = 1.

Dirichlet’s Theorem can be rephrased as saying that limx→∞ π(x; q, a) = ∞ when
gcd(q, a) = 1. On the other hand, the prime number theorem says that π(x) ∼
x/ log x. A slight modification of the proof of the PNT can yield an analogous as-
ymptotic result for primes in arithmetic progression: if gcd(q, a) = 1, then

π(x; q, a) ∼ 1

φ(q)

x

log x
,

where φ(q) is the Euler-totient function, a function we will carefully study in a few
weeks. φ(q) is equal to the number of integers a with 1 ≤ a ≤ q which are relatively
prime to q; for instance, φ(4) = 2, φ(6) = 2, φ(8) = 4. The previous theorem says
that, at least asymptotically speaking, each particular arithmetic progression qk + a
gets its ‘fair share’ of the primes.

Or does they? After all, the above result only says something about asymptotic
density, which is a first-order approximation to the size of functions. If one were to
actually look at a plot of the number of primes of the form 4k + 1 vs 4k + 3, the
first feature that would jump out is that π(x; 4, 3) > π(x; 4, 1) for the entire time, at
least if x is not too large. The fact that π(x; 4, 3) > π(x; 4, 1) for most values of x
is called Chebyshev’s bias, after the Russian mathematician who first observed this
phenomenon.

However, π(x; 4, 3) is not ahead the entire time. As a matter of fact, in the early
20th century, J.E. Littlewood proved that π(x; 4, 1) beats π(x; 4, 3) for an infinite
number of x, despite the data for small x suggesting otherwise. However, perhaps
π(x; 4, 3) beats π(x; 4, 1) for ‘most’ x?

It was initially conjectured that the fraction of such numbers x has density 1.
However, this was later proven to be false. One can then ask, does this fraction
have a limit as x → ∞? Well, it was also proven, under a conjecture known as the
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Generalized Riemann Hypothesis, that there is no such limit; ie, the proportion of
the time π(x; 4, 3) > π(x; 4, 1) has no limit as x→∞!

At least, this is true if we weight each number x by the same amount in the count.
However, if we use what is known as a logarithmic density, then we have the following
result of Rubinstein and Sarnak:

Theorem 1. Assuming two unproven conjectures (the GRH and another conjecture
known as Linear Independence), the following is true:

1

log x

∑
x≤X,

π(x;4,3)>π(x;4,1)

1

x
→ .9959 . . . .

This result opened up a small speciality in number theory dedicated to understand-
ing such phenomenon in general. Needless to say, the techniques for the proofs of
theorems like these require rather advanced techniques.

2. Special kinds of prime numbers: Fermat and Mersenne numbers

Let’s consider some special prime numbers. First, we’ll look at numbers of the
form 2n − 1, which are called Mersenne numbers . Notice that when n = 2, 3, 5, 7,
2n − 1 = 3, 5, 31, 127, and these are all prime numbers. One might be led to think
that 2p − 1 is prime when p is prime from these examples, but actually 211 − 1 =
2047 = 23 · 89 is not a prime number. Nevertheless, it is true that if 2p − 1 is prime,
then p is a prime:

Proposition 1. Suppose 2n − 1 is prime. Then n is prime.

Proof. We prove the contrapositive. Suppose n is composite; say n = ab, for 1 <
a, b < n. Then we can factor 2n − 1 = 2ab − 1 as follows:

2ab − 1 = (2a − 1)(2a(b−1) + 2a(b−2) + . . .+ 1).

Checking that this equation is true is routine algebra. In any case, if 1 < a, b, then
2a − 1 > 1, and 2a(b−1) + . . .+ 1 > 1 as well. So this factorization shows that 2n − 1
is divisible by some number between 1, 2n − 1 if n is composite. �

Part of the reason why Mersenne primes are interesting is because there exists
a very rapid test, called the Lucas-Lehmer test, to determine whether a Mersenne
number is actually prime. The Internet project “GIMPS”, which is short for the
Great Internet Mersenne Prime Search, is one of the first distributed computing
projects which appeared on the Internet in the 1990s. All the largest known prime
numbers (by far) are Mersenne primes. Let Mn = 2n − 1. Then as of late 2010 the
largest known Mersenne prime (and the largest known prime) is M43112609, which has
almost 13 million digits. This is the 47th known Mersenne prime, although currently
it is unknown whether this is the 47th smallest Mersenne prime, since GIMPS has
yet to rule out the existence of Mersenne primes under M43112609. Incidentally, the
Lucas-Lehmer primality test does not actually tell you any of the factors of Mp when
it tells you that Mp is composite. This might seem to be a drawback, but this is

http://en.wikipedia.org/wiki/Mersenne_prime
http://en.wikipedia.org/wiki/Lucas-Lehmer_primality_test
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an illustration of the general empirical principle that (based on current knowledge)
primality testing is much faster than factorization.

If you are interested in learning more about and possibly participating in GIMPS,
head to their website at www.mersenne.org. In general, it takes about a month to run
a primality test on a single candidate. GIMPS statistics There has been a discovery
of a new prime about once every two years or so, with the most recent coming in
2009. There are also small cash prizes available for discovering new Mersenne primes,
and a $150, 000 prize for the first discoverer of a prime with more than 100 million
digits. However, there is very little hope for discovering such a large prime in any
reasonable time with current computer hardware. Maybe in another ten or twenty
years!

The GIMPS webpage statistics indicate that GIMPS is running at about 50 ter-
aflops (50 trillion floating point operations per second, a measure of the computa-
tional power of all the computers running GIMPS right now). By way of compar-
ison, the project SETI@Home (which searches for intelligent extraterrestrial life by
scanning stars for unusual electromagnetic signals) has about 750 teraflops of ca-
pacity, while the largest distributed computing project, Folding@Home, has about 6
petaflops (6,000 teraflops) of computing power. The current top supercomputer in
the world, the K Computer in Japan, has peak capacity of about 8 petaflops, while
IBM is designing a new supercomputer called Sequoia, which apparently will run at
20 petaflops when finished. So if we unleashed the power of these supercomputers
(or if GIMPS just became more popular), then Mersenne primes would probably be
discovered more quickly. However, it’s probably true that testing Mersenne numbers
for primality is not the best use of such expensive computing hardware!

By the way, it is unknown whether there actually are infinitely many Mersenne
primes. Proving this theoretical fact (as opposed to experimental computations)
would be a great breakthrough.

3. Fermat numbers

We very briefly looked at numbers of the form 2n − 1 and considered the problem
of when they were prime. We found that if 2n − 1 is prime, then n is prime, but for
many primes 2p − 1 can be composite. As a matter of fact only 47 such primes have
been discovered so far, with p getting as large as 43 million or so. Whether there
are infinitely many such primes is still an open question, but distributed computing
projects exist to try to find larger and larger such primes. There is a specialized
primality test, the Lucas-Lehmer test, for numbers of this form, and we may come
back to this near the end of the class.

Let us now consider numbers of the form 2n + 1, and in particular consider the
question of when these numbers are prime. If you calculate the first few instances
of this number, you get 21 + 1 = 3, 22 + 1 = 5, 23 + 1 = 9, 24 + 1 = 17, 25 + 1 =
33, 26 + 1 = 65, 27 + 1 = 129, . . .. The pattern is not obvious, but perhaps one thing
which jumps out at us is that 2n + 1 seems to be composite if n is odd. As a matter
of fact, we can prove something slightly better:

www.mersenne.org
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Proposition 2 (Proposition 2.11 of the text). Let n be an integer with n ≥ 2. Then
2n+1 is composite if n is not a power of 2. (Evidently this condition on n is equivalent
to saying that no odd prime divides n.)

Proof. Suppose that n is not a power of 2. Then we may write n = 2km, for some
integer k ≥ 0, m an odd number greater than 1. Let a = 22k . Then we may factor
2n + 1 as follows:

22km + 1 = am + 1 = (a+ 1)(am−1 − am−2 + am−3 − . . .− a+ 1).

Notice that we use the fact thatm is odd to ensure that the final term in the expression
on the right really is a +1 as opposed to a −1.

This does show that 2n + 1 is composite, because a + 1 > 1 (as a matter of fact,
a+ 1 ≥ 3), and a+ 1 < am + 1 because m ≥ 3. �

This proposition tells us that if we want to find primes of the form 2n+1, we should
be looking for numbers of the form 22n+1. These numbers are called Fermat numbers ,
after Pierre de Fermat, a French lawyer in the 17th century who also happened to
be one of the most important mathematicians of the time, who was perhaps the first
person to systematically study these numbers.

Let’s write Fn = 22n + 1. The first few Fermat numbers are F0 = 3, F1 = 5, F2 =
17, F3 = 257, F4 = 65537. Evidently F5 is quite large; it is equal to 4294967297.
Fermat looked at the beginning of this sequence and it is not too time-consuming to
check that 3, 5, 17, 257, 65537 are all prime numbers. On the basis of this evidence,
Fermat conjectured that all Fermat numbers are prime.

This provides a historical lesson in perhaps not making general conjectures on a
small amount of numerical evidence. About a hundred years later, Euler showed
that F5 is composite by exhibiting a factorization of F5, and every Fermat number
past F5 which has been checked for primality/compositeness has been shown to be
composite! As a matter of fact, it is still an open question whether there are either
infinitely many prime Fermat numbers or infinitely many composite Fermat numbers.
One of these must be true, but we still don’t know which one! The general belief is
that there are infinitely many composite Fermat numbers, and probably only finitely
many prime Fermat numbers, but no one seems to have any real idea how to tackle
these problems.

Fermat numbers have some interest outside of number theory. As a young man,
Gauss proved that a regular n-gon is constructible by straightedge and compass (a
type of problem very important in classical Euclidean geometry) if n = 2kp1 . . . pr,
where k ≥ 0 and the pi are distinct Fermat primes. This condition was later proved
to also be necessary; Gauss claimed this but did not give a proof himself (although
it is possible he found one but never published it). As a matter of fact, the story is
that Gauss discovered the constructibility of a regular 17-gon in his late teens, and
it was this discovery which convinced him to become a professional mathematician.

We can use Fermat numbers to give a clever proof of the fact that there are infinitely
many prime numbers. First we start with the following proposition, still in the flavor
of the last two propositions we have proved:

http://en.wikipedia.org/wiki/Fermat_number
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Proposition 3 (Lemma 2.12 of the text). Let n ≥ 0,m > 0. Then Fn, Fn+m have
distinct prime factors; equivalently, gcd(Fn, Fn+m) = 1.

Proof. We claim that Fn|(Fn+m − 2). Let a = 22n . Then Fn = a + 1. Notice that
Fn+m = 22n+m

+ 1 = (22n)2
m

+ 1 = a2
m

+ 1. Then Fn+m − 2 = a2
m − 1. But then we

may factor a2
m − 1 as follows:

a2
m − 1 = (a+ 1)(a2

m−1 − a2m−2 + . . .+ a− 1).

This time, we are critically using the fact that 2m is even for this factorization to
make sense. In any case, this shows that (a+ 1)|(a2m − 1). But then this means that
gcd(Fn, Fn+m) = gcd(a+ 1, (a2

m − 1) + 2) = gcd(a+ 1, 2). Because a+ 1 is odd, this
gcd is equal to 1, as desired. �

This shows that there are infinitely many primes, because each Fermat number has
prime factors which are distinct from the prime factors of any of the other Fermat
numbers, and there are infinitely many Fermat numbers.
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