MATH 25 CLASS 9 NOTES, OCT 10 2011

CONTENTS
(1. A short introduction to primality testing and factorization| 1
[2. Generating lists of prime numbers: the sieve of Eratosthenes| 4

1. A SHORT INTRODUCTION TO PRIMALITY TESTING AND FACTORIZATION

When studying primality and factorization, perhaps the two most natural compu-
tational questions are the following:

e Given a positive integer n, how can we determine if n is prime or not? How
fast can we do this?

e Given a positive integer n, how can we find the factorization of n? How fast
can we do this?

The second question can be reformulated as “Given a positive integer n, how can we
find a nontrivial factor of n or show that none exists?”, since if we have an algorithm
answering this question, the algorithm can be applied repeatedly until we end up
with a prime factorization.

The first question is called primality testing, and in computer science is sometimes
called PRIMES, while the second question is called integer factorization. Notice that
integer factorization is at least as hard as primality testing, because if you know the
factorization of an integer, then you immediately know whether that number is prime
or not.

It is a fact of current mathematical knowledge that, as of right now, primality
testing is much easier than factorization. This may sound somewhat strange, but
makes some sense once one learns that all fast primality tests are unable to reliably
exhibit any actual factors of n if they discover that n is not prime. A lot of modern
research in mathematics and computer science centers around these two questions,
because primality testing and integer factorization have turned out to be of funda-
mental importance in cryptography. Later in this class we will take a look at the
RSA algorithm, which is one currently used method of encryption used to secure
information transfer over the Internet.

In any case, we can definitely find some algorithm to answer the two questions
above. After all, to find the factorization of an integer n, just start dividing it by
successively larger integers d, starting with d = 2, until one finds d | n. This has
to eventually happen, since n | n. This method of finding factors, where one simply
tries to divide n by successively larger integers, is known as trial division.

As a matter of fact, the first number d which divides n must be a prime. For if
not, say p | d, then p | n, and we would have discovered that p divided n prior to d
dividing n, contradicting the fact that d is the smallest nontrivial divisor of n. So trial

division will provide us with the smallest prime factor, say p;, of n. One then applies
1

http://en.wikipedia.org/wiki/Primality_test
http://en.wikipedia.org/wiki/Integer_factorization

2 MATH 25 CLASS 9 NOTES, OCT 10 2011

trial division to n/py, to find a prime factor ps; it may be the case that p; = ps, but
in any case one then applies trial division to n/(pip2). Eventually one has to have
n = pips...p,, for not necessarily distinct primes p;, and this is the factorization of
n.

Of course, trial division also works as a primality test. If one finds that p|n for
some prime p < n, then n cannot be prime, and if no such p divides n, then n is
prime. This formulation of trial division seems to need about n divisions in the worse
case, since if n is indeed a prime, one needs to test all the numbers from 2 to n — 1
as factors of n.

However, there is a lot of extraneous computation in this naive version of trial
division. The following proposition shows that we really only need about y/n divisions
in the worse case:

Proposition 1 (Lemma 2.14 of text). If n is composite, then n has a nontrivial
factor d such that d < \/n.

Proof. Since n is composite, write n = ab with 1 < a,b < n. Then one of a,b < \/n,
for if not, then ab > \/52 = n, which contradicts the fact that n = ab. O

This proposition tells us that we only need to trial divide by d up to \/n to deter-
mine whether n is prime (or to find a factor of n). For instance, if n = 101 (which
turns out to be prime), we need to only check n for divisibility by 2,3,4,...,10 to
either find a factor or conclude that n is prime. Try actually testing for divisibility
by these numbers.

In this example, you probably realized that even doing trial divisions by 2,3,4,...,10
has extraneous computation. After all, if 4|n, then 2|n. And we’ve already said that
the smallest nontrivial factor, if one exists, of a number n must be a prime. So in
reality we need only test n for divisibility by primes p < v/n. In the case of n = 101,
this means we need only test for divisibility by 2, 3,5, 7. So, for example, 2 1 101 since
101 is not even, 3 1 101 since 3 1 2, and 2 is the sum of the digits of 101, 51 101 since
101 does not end in 5,0, and 7 4 101 since one checks that 7-14 = 98,7 - 15 = 105.
Hence 101 is prime.

So let’s summarize what’s happened so far. In our first, very crude version of trial
division, in the worst case we needed about n trial divisions to prove a number prime.
A simple observation allowed us to lower that number to /n trial divisions. And as
a matter of fact we need only check for divisibility by primes up to v/n. Let’s think
about how much of a saving that gets us.

To determine how many divisions we need to do in the worse case scenario with
this version of trial division, we need to know how many prime numbers there are less
than /n; that is, we want an estimate for m(y/n). If you believe the prime number
theorem (which is true), then

r(VA) ~ v _ 2/
ogy/n logn
So evidently we get a savings by a factor of logn when we only do trial division by
primes up to y/n, instead of all integers up to y/n. Unfortunately, logn = o(z2°) for
any 0 > 0, so for large n this saving is rather small compared to the total amount of
computation required.

MATH 25 CLASS 9 NOTES, OCT 10 2011 3

However, there is one substantial practical problem to using this version of trial
division. For instance, suppose I asked you to test a six digit number, say of size
around 10°, for primality. We know that we need to only test divisibility by primes
up to about 1000. But what are the primes up to 10007 Evidently you need a
precomputed list of all the primes up to y/n if you want to carry this version of trial
division out, and this requires some amount of computer time to generate. If you ask
a computer to use trial division to test a number of size 10%°, say, one would need
to store something like 10? or 10'° primes in memory. So perhaps it is not practical
to only try divisibility by primes for moderately large n (of course, the meaning of
‘moderately’” depends on the context).

One can compromise between the version of trial division which tests all numbers
up to y/n vs primes up to y/n. For instance, it is obvious that even numbers bigger
than 2 are not prime, so we can just skip testing for divisibility by these numbers.
This gives a savings by a factor of 2, since half of all numbers are even. In practice,
it is easy to recognize even numbers, since we need only look at the last digit, and for
computers it is especially easy since they store numbers as base 2 and only need to
check whether the last digit is 0 or 1. If one were slightly more ambitious, one could
also not test divisibility by numbers which are multiples of other small primes, like 3
or 5, and get more savings.

In practice, given current computer speeds, a personal computer can test a number
for primality /factors using trial division in a few seconds for numbers of size perhaps
of order 10'® or so (this might be off slightly, and will depend on how new the
computer being used is).

There have been much more sophisticated primality and factorization methods de-
veloped, many in the past half century, which perform much better, both theoretically
and in practice, than trial division. One feature is that many of these primality tests
cannot actually return factors if they tell you that a number is composite. For a long
time, it was believed that primality testing had a polynomial-time algorithm which
would correctly determine whether a number is composite or prime(that is, an algo-
rithm whose worse-case run time was a polynomial in the number of digits of n). In
2002, the team of Agrawal, Kayal, and Saxena exhibited such an algorithm. Amaz-
ingly enough, the algorithm used elementary ideas, and maybe even more amazing,
Kayal and Saxena were undergraduates when they did this work!

It might be worth pointing out that in practice, the AKS algorithm is not what
is actually used to test for primality on modern computer systems. There are other
algorithms which might run in polynomial time: they do indeed run in polynomial
time if certain unproved conjectures in mathematics (for example, the proof of the
correctness of the polynomial-time deterministic version of the ‘Miller-Rabin’ test is
based on a generalization of the Riemann Hypothesis) are assumed to be true. There
are also other algorithms which are probabilistic: these algorithms may sometimes
mistakenly tell you that a composite number is actually prime. Why would one
bother with these tests? The most obvious reason is that they are much faster than
even the best deterministic tests — even the ones conditional on unproven statements.
(Deterministic means that a test definitely tells you whether a number is prime or
composite, with no possibility of error, as opposed to a probabilistic test.) Another
reason is that the probability of error can be made very small. For instance, the
Miller-Rabin test (the probabilistic version) has error rate about (1/4)", where n is

4 MATH 25 CLASS 9 NOTES, OCT 10 2011

the number of runs of the test, and if the test is fast it is not harmful to run the test
100 or 200 times. And in practice, one is easily willing to accept an error of order
107, say, since it is much more likely that something totally crazy, like asteroids
hitting the Earth, widespread power failures, or catastrophic computer hardware
error, will occur!

2. GENERATING LISTS OF PRIME NUMBERS: THE SIEVE OF ERATOSTHENES

Suppose you want to find all the prime numbers between 1 and N. One could test
each number between 2 to N using your favorite method, such as trial division. But
this a lot of work; after all, if N = 100, say, and you were doing this by hand, you
would have to trial divide large two-digit numbers, which doesn’t sound like a lot
of fun. Furthermore, you do some redundant work: for instance, you test every odd
number for divisibility by 2, which you already know isn’t going to happen, and you
test every multiple of 3 which is not even for divisibility by 3, even though you know
that isn’t going to happen.

The following simple systematic method for tabulating all the primes up to N was
developed by the ancient Greek Eratosthenes. One starts with a list of the integers
from 2 to N. Look at the smallest number not yet crossed off in the list; right now this
number is 2. Cross off every number which is a multiple of 2, except 2 itself. Every
number we cross off obviously is not prime, since it is a multiple of the prime 2. Once
we have eliminated every multiple of 2 from our list, we look at the smallest number
not yet crossed off and not known to be prime yet, which is p = 3. This number
must be prime, since it is not a multiple of any number smaller than it (except 1).
We cross off every proper multiple of 3 from our list. We continue like this, at each
step looking at the smallest number not yet crossed off and not known to be prime.
This number must be a prime p, since it is not divisible by any prime than p (since
it has yet to be crossed off). We cross off every proper multiple of p in our list.

When does this algorithm end? It definitely ends when we reach a point where
there are no more non-crossed off numbers on our list. But it actually ends earlier
than this. Notice that we can stop once have eliminated multiples of a prime p for
all p < V/N, since every number between 1 and N must be divisible by some prime
<VN.

Each step of this algorithm, where we eliminate proper multiples of a prime p, is
sometimes called ‘sieving’ the multiples of p. The reasoning behind this name is clear;
just like a sieve in real life, we are eliminating numbers which satisfy some property.
Here is a quick sampler of the sieve of Eratosthenes applied to N = 30. We start
with a list of all the numbers from 2 to 30:

2,3,4,5,6,7,8,9,10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30.

Eliminate all proper multiples of 2. We will also underline the number 2 to indicate
that it is a prime number which we have sieved by already:

2,3,5,7,9,11,13, 15,17, 19, 21, 23, 25, 27, 29.

The smallest number on this list not known to be prime yet is 3, so we know 3 is
prime. Eliminate all proper multiples of 3 that are on this list:

MATH 25 CLASS 9 NOTES, OCT 10 2011 5

2,3,5,7,11,13,17,19, 23, 25, 29.
Now p = 5 is a prime, and we sieve by 5:

2.3,5,7,11,13,17, 19, 23, 29.

Since 7 > /30, we have sieved by every prime less than /30, so whatever is left is
the list of all primes between 2 and 30.

	1. A short introduction to primality testing and factorization
	2. Generating lists of prime numbers: the sieve of Eratosthenes

