Week 
Lectures 
Sections in Text 
Brief Description 
1 
M 9/12 
1.1, 1.2 
Introduction, Division and Euclidean Algorithms 

W 9/14 
1.2, 1.3 
Bezout's Identity, Least Common Multiples 

F 9/16 
1.4 
Linear Diophantine Equations 
2 
M 9/19 
2.1 
Prime Numbers 

W 9/21 
2.2 
Prime Distributions 

F 9/23 
2.4, 2.3 
Primality Testing 
3 
M 9/26 
3.1 
Modular Arithmetic 

W 9/28 
3.2, 3.3 
Linear Congruences, Chinese Remainder Theorem 

F 9/30 
3.3, 3.4 
Simultaneous Congruences 
4 
M 10/3 
4.1 
The Arithmetic of ${\mathbb Z}_p$ 

W 10/5 
4.1, 4.2 
Pseudoprimes 

F 10/7 
4.2 
Carmichael Numbers 
5 
M 10/10 
5.1, 5.2 
Euler's Function 

W 10/12 
5.3 
Applications of Euler's Function 

F 10/14 

Cryptography 
6 
M 10/17 
6.1, 6.2 
The Group of Units and Primitive Roots 

W 10/19 
6.3 
Primitive Roots for Composite Moduli 

F 10/21 
6.4, 6.5 
The Existence of Primitive Roots 
7 
M 10/24 
6.6, 7.1 
Applications of Primitive Roots, Quadratic Congruences 

W 10/26 
7.2, 7.3 
Quadratic Residues, The Legendre Symbol 

F 10/28 
7.4 
Quadratic Reciprocity 