Homework 3

(Linear congruences and the Chinese Remainder Theorem) Due Wednesday, October 9 at 11:30am in class.

Note: Be sure to justify your answers. No credit will be given for answers without work/justification. In addition, all written homework assignments should be neat and well-organized; this assignment has only one part and can be submitted as a single packet.

(1) For this problem, you may assume the following theorem.

Theorem 1. Let f(x) be a polynomial with integer coefficients. If there exists an integer n > 1 such that the congruence $f(x) \equiv 0 \mod (n)$ has no solutions x, then the equation f(x) = 0 can have no integer solutions x.

In other words, if f(x) has no zeros modulo n, then f(x) has no integer roots.

- (a) Show that the polynomial $x^3 x + 1$ has no integer roots.
- (b) Show that the polynomial $x^3 + x^2 x + 3$ has no integer roots.
- (c) Write the contrapositive of Theorem 1.
- (d) Write the converse to the contrapositive from part (c).
- (e) Show that the converse of the contrapositive holds for every polynomial of the form ax + b where a and b are integers.
- (f) Prove that the congruence $6x^2 + 5x + 1 \equiv 0 \pmod{n}$ has a solution for every positive integer *n*. (And note that $6x^2 + 5x + 1 \equiv 0$ has no integer solutions.)
- (2) Prove that if $ac \equiv bc \pmod{n}$ and gcd(c, n) = 1, then $a \equiv b \pmod{n}$.
- (3) Solve each linear congruence or system of linear congruences, if a solution exists. If no solution exists, state why.
 - (a) $x^2 \equiv 1 \pmod{7}$
 - (b) $66x \equiv 100 \pmod{121}$
 - (c) $21x \equiv 14 \pmod{91}$
 - (d) $x \equiv 5 \pmod{7}$ and $x \equiv 2 \pmod{12}$ and $x \equiv 8 \pmod{13}$
- (4) A composite number m is called a Carmichael number if the congruence $a^{m-1} \equiv 1 \pmod{m}$ is true for every number a with gcd(a, m) = 1. Show that $m = 561 = 3 \cdot 11 \cdot 17$ is a Carmichael number.

Fun problem (will not be graded): Try to find another Carmichael number. Do you think that there are infinitely many of them?