
Chapter 3

Distribution Problems

3.1 The idea of a distribution

Many of the problems we solved in Chapter 1 may be thought of as prob-
lems of distributing objects (such as pieces of fruit or ping-pong balls) to
recipients (such as children). Some of the ways of viewing counting problems
as distribution problems are somewhat indirect. For example, in Problem
31 you probably noticed that the number of ways to pass out k ping-pong
balls to n children is the number of ways that we may choose a k-element
subset of an n-element set. We think of the children as recipients and objects
we are distributing as the identical ping-pong balls, distributed so that each
recipient gets at most one ball. Those children who receive an object are
in our set. It is helpful to have more than one way to think of solutions to
problems. In the case of distribution problems, another popular model for
distributions is to think of putting balls in boxes rather than distributing
objects to recipients. Passing out identical objects is modeled by putting
identical balls into boxes. Passing out distinct objects is modeled by putting
distinct balls into boxes.

3.1.1 The twenty-fold way

When we are passing out objects to recipients, we may think of the objects
as being either identical or distinct. We may also think of the recipients as
being either identical (as in the case of putting fruit into plastic bags in the
grocery store) or distinct (as in the case of passing fruit out to children).
We may restrict the distributions to those that give at least one object to
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46 CHAPTER 3. DISTRIBUTION PROBLEMS

Table 3.1: An incomplete table of the number of ways to distribute k objects
to n recipients, with restrictions on how the objects are received

The Twentyfold Way: A Table of Distribution Problems
k objects and conditions n recipients and mathematical model for distribution
on how they are received Distinct Identical
1. Distinct nk ?
no conditions functions set partitions (≤ n parts)
2. Distinct nk 1 if k ≤ n; 0 otherwise
Each gets at most one k-element permutations
3. Distinct ? ?
Each gets at least one onto functions set partitions (n parts)
4. Distinct k! = n! 1 if k = n; 0 otherwise
Each gets exactly one bijections
5. Distinct, order matters ? ?

? ?
6. Distinct, order matters ? ?
Each gets at least one ? ?
7. Identical ? ?
no conditions ? ?
8. Identical

(
n
k

)
1 if k ≤ n; 0 otherwise

Each gets at most one subsets
9. Identical ? ?
Each gets at least one ? ?
10. Identical 1 if k = n; 0 otherwise 1 if k = n; 0 otherwise
Each gets exactly one

each recipient, or those that give exactly one object to each recipient, or
those that give at most one object to each recipient, or we may have no
such restrictions. If the objects are distinct, it may be that the order in
which the objects are received is relevant (think about putting books onto
the shelves in a bookcase) or that the order in which the objects are received
is irrelevant (think about dropping a handful of candy into a child’s trick or
treat bag). If we ignore the possibility that the order in which objects are
received matters, we have created 2 · 2 · 4 = 16 distribution problems. In the
cases where a recipient can receive more than one distinct object, we also
have four more problems when the order objects are received matters. Thus
we have 20 possible distribution problems.

We describe these problems in Table 3.1. Since there are twenty possible
distribution problems, we call the table the “Twentyfold Way,” adapting ter-
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minology suggested by Joel Spencer for a more restricted class of distribution
problems. In the first column of the table we state whether the objects are
distinct (like people) or identical (like ping-pong balls) and then give any
conditions on how the objects may be received. The conditions we consider
are whether each recipient gets at most one object, whether each recipient
gets at least one object, whether each recipient gets exactly one object, and
whether the order in which the objects are received matters. In the second
column we give the solution to the problem and the name of the mathe-
matical model for this kind of distribution problem when the recipients are
distinct, and in the third column we give the same information when the
recipients are identical. We use question marks as the answers to problems
we have not yet solved and models we have not yet studied. We give explicit
answers to problems we solved in Chapter 1 and problems whose answers are
immediate. The goal of this chapter is to develop methods that will allow
us to fill in the table with formulas or at least quantities we know how to
compute, and we will give a completed table at the end of the chapter. We
will now justify the answers that are not question marks.

If we pass out k distinct objects (say pieces of fruit) to n distinct recipients
(say children), we are saying for each object which recipient it goes to. Thus
we are defining a function from the set of objects to the recipients. We saw
the following theorem in Problem 21c.

Theorem 3 There are nk functions from a k-element set to an n-element
set.

We proved it in Problem 21e. If we pass out k distinct objects (say pieces of
fruit) to n indistinguishable recipients (say identical paper bags) then we are
dividing the objects up into disjoint sets; that is we are forming a partition
of the objects into some number, certainly no more than the number k of
objects, of parts. Later in this chapter (and again in the next chapter) we
shall discuss how to compute the number of partitions of a k-element set into
n parts. This explains the entries in row one of our table.

If we pass out k distinct objects to n recipients so that each gets at most
one, we still determine a function, but the function must be one-to-one. The
number of one-to-one functions from a k-element set to an n element set is the
same as the number of one-to-one functions from the set [k] = {1, 2, . . . , k}
to an n-element set. In Problem 24 we proved the following theorem.

Theorem 4 If 0 ≤ k ≤ n, then the number of k-element permutations of an



48 CHAPTER 3. DISTRIBUTION PROBLEMS

n-element set is

nk = n(n− 1) · · · (n− k + 1) = n!/(n− k)!.

If k > n there are no one-to-one functions from a k element set to an n
element, so we define nk to be zero in this case. Notice that this is what
the indicated product in the middle term of our formula gives us. If we are
supposed distribute k distinct objects to n identical recipients so that each
gets at most one, we cannot do so if k > n, so there are 0 ways to do so. On
the other hand, if k ≤ n, then it doesn’t matter which recipient gets which
object, so there is only one way to do so. This explains the entries in row
two of our table.

If we distribute k distinct objects to n distinct recipients so that each
recipient gets at least one, then we are counting functions again, but this
time functions from a k-element set onto an n-element set. At present we do
not know how to compute the number of such functions, but we will discuss
how to do so later in this chapter and in the next chapter. If we distribute k
identical objects to n recipients, we are again simply partitioning the objects,
but the condition that each recipient gets at least one means that we are
partitioning the objects into exactly n blocks. Again, we will discuss how
compute the number of ways of partitioning a set of k objects into n blocks
later in this chapter. This explains the entries in row three of our table.

If we pass out k distinct objects to n recipients so that each gets exactly
one, then k = n and the function that our distribution gives us is a bijection.
The number of bijections from an n-element set to an n-element set is n! by
Theorem 4. If we pass out k distinct objects of n identical recipients so that
each gets exactly 1, then in this case it doesn’t matter which recipient gets
which object, so the number of ways to do so is 1 if k = n. If k 6= n, then the
number of such distributions is zero. This explains the entries in row four of
our table.

We now jump to row eight of our table. We saw in Problem 31 that the
number of ways to pass out k identical ping-pong balls to n children is simply
the number of k-element subsets of a k-element set. In Problem 33 we proved
the following theorem.

Theorem 5 If 0 ≤ k ≤ n, the number of k-element subsets of an n-element
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set is given by (
n

k

)
=

nk

k!
=

n!

k!(n− k)!
.

We define
(

n
k

)
to be 0 if k > n, because then there are no k-element subsets

of an n-element set. Notice that this is what the middle term of the formula
in the theorem gives us. This explains the entries of row 8 of our table.

In row 10 of our table, if we are passing out k identical objects to n recip-
ients so that each gets exactly one, it doesn’t matter whether the recipients
are identical or not; there is only one way to pass out the objects if k = n
and otherwise it is impossible to make the distribution, so there are no ways
of distributing the objects. This explains the entries of row 10 of our ta-
ble. Several other rows of our table can be computed using the methods of
Chapter 1.

3.1.2 Ordered functions

100. Suppose we wish to place k distinct books onto the shelves of a bookcase
with n shelves. For simplicity, assume for now that all of the books
would fit on any of the shelves. Since the books are distinct, we can
think of them as the first book, the second book and so on, perhaps in
a stack. How many places are there where we can place the first book?
When we place the second book, if we decide to place it on the shelf
that already has a book, does it matter if we place it to the left of the
book that is already there? How many places are there where we can
place the second book? Once we have some number of books placed, if
we want to place a new book on a shelf that already has some books,
does it matter whether we place the new book to the immediate left
of a book already on the shelf? In how many ways may we place the
ith book into the bookcase? In how many ways may we place all the
books?

101. Suppose we wish to place the books in Problem 100 so that each shelf
gets at least one book. Now in how many ways may we place the books?
(Hint: how can you make sure that each shelf gets at least one book as
you start out putting books on the shelves?)

The assignment of which books go to which shelves of a bookcase is simply
a function from the books to the shelves. But a function doesn’t determine
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which book sits to the left of which others on the shelf, and this information
is part of how the books are arranged on the shelves. In other words, the
order in which the shelves receive their books matters. Our function must
thus assign an ordered list of books to each shelf. We will call such a function
an ordered function. More precisely, an ordered function from a set S to
a set T is a function that assigns an (ordered) list of elements of S to some,
but not necessarily all, elements of T in such a way that each element of S
appears on one and only one of the lists.1 (Notice that although it is not
the usual definition of a function from S to T , a function can be described
as an assignment of subsets of S to some, but not necessarily all, elements of
T so that each element of S is in one and only one of these subsets.) Thus
the number of ways to place the books into the bookcase is the entry in the
middle column of row 5 of our table. If in addition we require each shelf to
get at least one book, we are discussing the entry in the middle column of
row 6 of our table. An ordered onto function is one which assigns a list to
each element of T .

3.1.3 Broken permutations and Lah numbers

102. In how many ways may we stack k distinct books into n identical boxes
so that there is a stack in every box? (Hint: Imagine taking a stack of k
books, and breaking it up into stacks to put into the boxes in the same
order they were originally stacked. If you are going to use n boxes,
in how many places will you have to break the stack up into smaller
stacks, and how many ways can you do this?) (Alternate hint: How
many different bookcase arrangements correspond to the same way of
stacking k books into n boxes so that each box has at least one book?).
The hints may suggest that you can do this problem in more than one
way!

We can think of stacking books into identical boxes as partitioning the
books and then ordering the blocks of the partition. This turns out not to be
a useful computational way of visualizing the problem because the number
of ways to order the books in the various stacks depends on the sizes of
the stacks and not just the number of stacks. However this way of thinking
actually led to the first hint in Problem 102. Instead of dividing a set up

1The phrase ordered function is not a standard one, because there is as yet no standard
name for the result of an ordered distribution problem.
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into nonoverlapping parts, we may think of dividing a permutation (thought
of as a list) of our k objects up into n ordered blocks. We will say that a set
of ordered lists of elements of a set S is a broken permutation of S if each
element of S is in one and only one of these lists.2 The number of broken
permutations of a k-element set with n blocks is denoted by L(n, k). The
number L(n, k) is called a Lah Number.

The Lah numbers are the solution to the question “In how many ways
may we distribute k distinct objects to n identical recipients if order matters
and each recipient must get at least one?” Thus they give the entry in row 6
and column 6 of our table. The entry in row 5 and column 6 of our table will
be the number of broken permutations with less than or equal to n parts.
Thus it is a sum of Lah numbers.

We have seen that ordered functions and broken permutations explain
the entries in rows 5 and 6 or our table.

3.1.4 Compositions of integers

103. In how many ways may we put k identical books onto n shelves if each
shelf must get at least one book?

104. A composition of the integer k into n parts is a list of n positive
integers that add to k. How many compositions are there of an integer
k into n parts?

105. Your answer in Problem 104 can be expressed as a binomial coefficient.
This means it should be possible to interpret a composition as a subset
of some set. Find a bijection between compositions of k into n parts
and certain subsets of some set. Explain explicitly how to get the
composition from the subset and the subset from the composition.

106. Explain the connection between compositions of k into n parts and the
problem of distributing k identical objects to n recipients so that each
recipient gets at least one.

The sequence of problems you just completed should explain the entry in the
middle column of row 9 of our table of distribution problems.

2The phrase broken permutation is not standard, because there is no standard name
for the solution to this kind of distribution problem.
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3.1.5 Multisets

In the middle column of row 7 of our table, we are asking for the number
of ways to distribute k identical objects (say ping-pong balls) to n distinct
recipients (say children).

107. In how many ways may we distribute k identical books on the shelves
of a bookcase with n shelves, assuming that any shelf can hold all the
books?

108. A multiset chosen from a set S may be thought of as a subset with
repeated elements allowed. For example the multiset of letters of the
word Mississippi is {i, i, i, i, m, p, p, s, s, s, s}. To determine a multiset
we must say how many times (including, perhaps, zero) each member
of S appears in the multiset. The size of a multiset chosen from S is
the total number of times any member of S appears. For example, the
size of the multiset of letters of Mississippi is 11. What is the number
of multisets of size k that can be chosen from an n-element set?

109. Your answer in the previous problem should be expressible as a bi-
nomial coefficient. Since a binomial coefficient counts subsets, find a
bijection between subsets of something and multisets chosen from a set
S.

110. How many solutions are there in nonnegative integers to the equation
x1 + x2 + · · ·+ xm = r, where m and r are constants?

The sequence of problems you just completed should explain the entry in the
middle column of row 7 of our table of distribution problems. In the next
two sections we will give ways of computing the remaining entries.

3.2 Partitions and Stirling Numbers

We have seen how the number of partitions of a set of k objects into n blocks
corresponds to the distribution of k distinct objects to n identical recipients.
While there is a formula that we shall eventually learn for this number, it
requires more machinery than we now have available. However there is a
good method for computing this number that is similar to Pascal’s equation.
Now that we have studied recurrences in one variable, we will point out that
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Pascal’s equation is in fact a recurrence in two variables; that is it lets us
compute

(
n
k

)
in terms of values of

(
m
i

)
in which either m < n or i < k or

both. It was the fact that we had such a recurrence and knew
(

n
0

)
and

(
n
n

)
that let us create Pascal’s triangle.

3.2.1 Stirling Numbers of the second kind

We use the notation S(k, n) to stand for the number of partitions of a k
element set with n blocks. For historical reasons, S(k, n) is called a Stirling
number of the second kind.

111. In a partition of the set [k], the number k is either in a block by itself,
or it is not. How does the number of partitions of [k] with n parts in
which k is in a block with other elements of [k] compare to the number
of partitions of [k − 1] into n blocks? Find a two variable recurrence
for S(n, k), valid for n and k larger than one.

112. What is S(k, 1)? What is S(k, k)? Create a table of values of S(k, n)
for k between 1 and 5 and n between 1 and k. This table is sometimes
called Stirling’s Triangle (of the second kind) How would you define
S(k, n) for the nonnegative values of k and n that are not both positive?
Now for what values of k and n is your two variable recurrence valid?

113. Extend Stirling’s triangle enough to allow you to answer the following
question and answer it. (Don’t fill in the rows all the way; the work
becomes quite tedious if you do. Only fill in what you need to answer
this question.) A caterer is preparing three bag lunches for hikers. The
caterer has nine different sandwiches. In how many ways can these nine
sandwiches be distributed into three identical lunch bags so that each
bag gets at least one?

114. The question in Problem 113 naturally suggests a more realistic ques-
tion; in how many ways may the caterer distribute the nine sandwich’s
into three identical bags so that each bag gets exactly three? Answer
this question. (Hint, what if the question asked about six sandwiches
and two distinct bags? How does having identical bags change the
answer?)
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115. In how many ways can we partition k items into n blocks so that we
have ki blocks of size i for each i? (Notice that

∑k
i=1 ki = n and∑k

i=1 iki = k.)

116. Describe how to compute S(n, k) in terms of quantities given by the
formula you found in Problem 115.

117. Find a recurrence similar to the one in Problem 111 for the Lah numbers
L(n, k).

118. The total number of partitions of a k-element set is denoted by B(k)
and is called the k-th Bell number. Thus B(1) = 1 and B(2) = 2.

(a) Show, by explicitly exhibiting the partitions, that B(3) = 5.

(b) Find a recurrence that expresses B(k) in terms of B(n) for n ≤ k
and prove your formula correct in as many ways as you can.

(c) Find B(k) for k = 4, 5, 6.

3.2.2 Stirling Numbers and onto functions

119. Given a function f from a k-element set K to an n-element set, we
can define a partition of K by putting x and y in the same block of
the partition if and only if f(x) = f(y). How many blocks does the
partition have if f is onto? How is the number of functions from a
k-element set onto an n-element set relate to a Stirling number? Be as
precise in your answer as you can.

120. Each function from a k-element set K to an n-element set N is a
function from K onto some subset of N . If J is a subset of N of size j,
you know how to compute the number of functions that map onto J in
terms of Stirling numbers. Suppose you add the number of functions
mapping onto J over all possible subsets J of N . What simple value
should this sum equal? Write the equation this gives you.

121. In how many ways can the sandwiches of Problem 113 be placed into
three distinct bags so that each bag gets at least one?

122. In how many ways can the sandwiches of Problem 114 be placed into
distinct bags so that each bag gets exactly three?
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123. (a) How many functions are there from a set K with k elements to a
set N with n elements so that for each i from 1 to n, ki elements
of N are each the images of i different elements of K. (Said differ-
ently, we have k1 elements of N that are images of one element of
K, we have k2 elements of N that are images of two elements of
K, and in general ki elements of N that are images of i elements
of K.) (We say y is the image of x if y = f(x).)

(b) How many functions are there from a k-element set K to a set
N = {y1, y2, . . . yn} so that yi is the image of ji elements of K for
each i from 1 to n. This number is called a multinomial coefficient
and denoted by

(
k

j1,j2,...,jn

)
.

(c) Explain how to compute the number of functions from a k-element
set K onto an n-element set N by using multinomial coefficients.

(d) What do multinomial coefficients have to do with expanding the
kth power of a multinomial x1 +x2 + · · ·+xn? This result is called
the multinomial theorem

3.2.3 Stirling Numbers and bases for polynomials

124. Find a way to express nk in terms of kj for appropriate values j. Notice
that xj makes sense for a numerical variable x (that could range over
the rational numbers, the real numbers, or even the complex numbers
instead of only the nonnegative integers, as we are implicitly asuming
n does), just as xj does. Find a way to express the power xk in terms
of the polynomials xj for appropriate values of j and explain why your
formula is correct.

You showed in Problem 124 how to get each power of x in terms of the falling
factorial powers xj. Therefore every polynomial in x is expressible in terms
of a sum of numerical multiples of falling factorial powers. We say that the
ordinary powers of x and the falling factorial powers of x are each bases for
the “space” of polynomials, and that the numbers S(k, n) are “change of
basis coefficients.”

125. Show that every power of x + 1 is expressible as a sum of powers of x.
Now show that every power of x (and thus every polynomial in x) is a
sum of numerical multiples (some of which could be negative) of powers
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of x + 1. This means that the powers of x + 1 are a basis for the space
of polynomials as well. Describe the change of basis coefficients that
we use to express the binomial powers (x+1)n in terms of the ordinary
xj explicitly. Find the change of basis coefficients we use to express the
ordinary powers xn in terms of the binomial powers (x + 1)k.

126. By multiplication, we can see that every falling factorial polynomial can
be expressed as a sum of numerical multiples of powers of x. In symbols,
this means that there are numbers s(k, n) (notice that this s is lower
case, not upper case) such that we may write xk =

∑k
n=0 s(k, n)xn.

These numbers s(k, n) are called Stirling Numbers of the first kind. By
thinking algebraically about what the formula

xn = xn−1(x− n + 1) (3.1)

means, we can find a recurrence for Stirling numbers of the first kind
that gives us another triangular array of numbers called Stirling’s tri-
angle of the first kind. Explain why Equation 3.1 is true and use it to
derive a recurrence for s(k, n) in terms of s(k−1, n−1) and s(k−1, n).

127. Write down the rows of Stirling’s triangle of the first kind for k = 0 to
6.

Notice that the Stirling numbers of the first kind are also change of basis
coefficients. The Stirling numbers of the first and second kind are change
of basis coefficients from the falling factorial powers of x to the ordinary
factorial powers, and vice versa.

128. Explain why every rising factorial polynomial xk can be expressed in
terms of the falling factorial polynomials xn. Let b(k, n) stand for the

change of basis coefficients that allow us to express xk in terms of the
falling factorial polynomials xn; that is, define b(k, n) by the equations

xk =
k∑

n=0

xn.

(a) Find a recurrence for b(k, n).

(b) Find a formula for b(k, n) and prove the correctness of what you
say in as many ways as you can.
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(c) Is b(k, n) the same as any of the other families of numbers (bino-
mial coefficients, Bell numbers, Stirling numbers, Lah numbers,
etc.) we have studied?

(d) Say as much as you can (but say it precisely) about the change of
basis coefficients for expressing xk in terms of xn.

3.3 Partitions of Integers

We have now completed all our distribution problems except for those in
which both the objects and the recipients are identical. For example, we
might be putting identical apples into identical paper bags. In this case all
that matters is how many bags get one apple (how many recipients get one
object), how many get two, how many get three, and so on. Thus for each
bag we have a number, and the multiset of numbers of apples in the various
bags is what determines our distribution of apples into identical bags. A
multiset of positive integers that add to n is called a partition of n. Thus
the partitions of 3 are 1+1+1, 1+2 (which is the same as 2+1) and 3. The
number of partitions of k is denoted by P (k); in computing the partitions of
3 we showed that P (3) = 3.

129. Find all partitions of 4 and find all partitions of 5, thereby computing
P (4) and P (5).

3.3.1 The number of partitions of k into n parts

130. A partition of the integer k into n parts is a multiset of n positive inte-
gers that add to k. We use P (k, n) to denote the number of partitions
of k into n parts. Thus P (k, n) is the number of ways to distribute
k identical objects to n identical recipients so that each gets at least
one. Find P (6, 3) by finding all partitions of 6 into 3 parts. What does
this say about the number of ways to put six identical apples into three
identical bags so that each bag has at least one apple?

131. With the binomial coefficients, with Stirling numbers of the second
kind, and with the Lah numbers, we were able to find a recurrence by
asking what happens to our subset, partition, or broken permutation
of a set S of numbers if we remove the largest element of S. Thus it
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is natural to look for a recurrence to count the number of partitions
of k into n parts by doing something similar. However since we are
counting distributions in which all the objects are identical, there is
no way for us to identify a largest element. However we can ask what
happens to a partition of an integer when we remove its largest part,
or if we remove one from every part.

(a) How many parts does the remaining partition have when we re-
move the largest part from a partition of k into n parts? What
can you say about the number of parts of the remaining partition
if we remove one from each part.

(b) If the largest part of a partition is j and we remove it, what integer
is being partitioned by the remaining parts of the partition? If we
remove one from each part of a partition of k into n parts, what
integer is being partitioned by the remaining parts?

(c) Use the answers to the last two questions to find and describe a
bijection between partitions of k into n parts and partitions of
smaller integers into appropriate numbers of parts.

(d) Find a recurrence (which need not have just two terms on the right
hand side) that describes how to compute P (k, n) in terms of the
number of partitions of smaller integers into a smaller number of
parts.

(e) What is P (k, 1) for a positive integer k?

(f) What is P (k, k) for a positive integer k?

(g) Use your recurrence to compute a table with the values of P (k, n)
for values of k between 1 and 7.

It is remarkable that there is no known formula for P (k, n), nor is there one
for P (k). This section and some future parts of these notes are devoted to
developing methods for computing values of p(n, k) and finding properties of
P (n, k) that we can prove even without knowing a formula.

3.3.2 Representations of partitions

132. How many solutions are there in the positive integers to the equation
x1 + x2 + x3 = 7 with x1 ≥ x2 ≥ x3?
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133. Explain the relationship between partitions of k into n parts and lists
x1, x2,. . . , xn of positive integers with x1 ≥ x2 ≥ . . . ≥ xn. Such a
representation of a partition is called a decreasing list representation of
the partition.

134. Describe the relationship between partitions of k and lists or vectors
(x1, x2, . . . , xn) such that x1 +2x2 + . . . kxk = k. Such a representation
of a partition is called a type vector representation of a partition, and
it is typical to leave the trailing zeros out of such a representation; for
example (2, 1) stands for the same partition as (2, 1, 0, 0). What is the
decreasing list representation for this partition, and what number does
it partition?

135. How does the number of partitions of k relate to the number of parti-
tions of k + 1 whose smallest part is one?

3.3.3 Ferrers and Young Diagrams and the conjugate
of a partition

The decreasing list representation of partitions leads us to a handy way to
visualize partitions. Given a decreasing list (k1, k2, . . . kn), we draw a figure
made up of rows of dots that has k1 equally spaced dots in the first row, k2

equally spaced dots in the second row, starting out right below the beginning
of the first row and so on. Equivalently, instead of dots, we may use identical
squares, drawn so that a square touches each one to its immediate right or
immediately below it along an edge. See Figure 3.1 for examples. The figure
we draw with dots is called the Ferrers diagram of the partition; sometimes
the figure with squares is also called a Ferrers diagram; sometimes it is called
a Young diagram. At this stage it is irrelevant which name we choose and
which kind of figure we draw; in more advanced work the boxes are handy
because we can put things like numbers or variables into them. From now
on we will use boxes and call the diagrams Young diagrams.

136. Draw the Young diagram of the partition (4,4,3,1,1). Describe the
geometric relationship between the Young diagram of (5,3,3,2) and the
Young diagram of (4,4,3,1,1).

137. The partition (k1, k2, . . . , kn) is called the conjugate of the partition
(j1, j2, . . . , jm) if we obtain the Young diagram of one from the Young
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Figure 3.1: The Ferrers and Young diagrams of the partition (5,3,3,2)

diagram of the other by flipping one around the line with slope -1
that extends the diagonal of the top left box. What is the conjugate of
(4,4,3,1,1)? How is the largest part of a partition related to the number
of parts of its conjugate? What does this tell you about the number of
partitions of a positive integer k with largest part m?

138. A partition is called self-conjugate if it is equal to its conjugate. Find
a relationship between the number of self-conjugate partitions of k and
the number of partitions of k into distinct odd parts.

139. Explain the relationship between the number of partitions of k into
even parts and the number of partitions of k into parts of even multi-
plicity, i.e. parts which are each used an even number of times as in
(3,3,3,3,2,2,1,1).

140. Show that P (k, n) is at least 1
n!

(
k−1
n−1

)
.

We have seen that the number of partitions of k into n parts is equal to the
number of ways to distribute k identical objects to n recipients so that each
receives at least one. If we relax the condition that each recipient receives at
least one, then we see that the number of distributions of k identical objects
to n recipients is

∑n
i=1 P (k, i) because if some recipients receive nothing,

it does not matter which recipients these are. This completes rows 7 and
8 of our table of distribution problems. The completed table is shown in
Figure 3.2. There are quite a few theorems that you have proved which are
summarized by Table 3.2. It would be worthwhile to try to write them all
down!
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Table 3.2: The number of ways to distribute k objects to n recipients, with
restrictions on how the objects are received

The Twentyfold Way: A Table of Distribution Problems
k objects and conditions n recipients and mathematical model for distribution
on how they are received Distinct Identical

1. Distinct nk
∑k

i=1 S(n, i)
no conditions functions set partitions (≤ n parts)

2. Distinct nk 1 if k ≤ n; 0 otherwise
Each gets at most one k-element permutations
3. Distinct S(k, n)n! S(k, n)
Each gets at least one onto functions set partitions (n parts)
4. Distinct k! = n! 1 if k = n; 0 otherwise
Each gets exactly one permutations

5. Distinct, order matters (k + n− 1)k
∑n

i=1 L(k, i)
ordered functions broken permutations (≤ n parts)

6. Distinct, order matters (k)n(k − 1)k−n L(k, n) =
(

k
n

)
(k − 1)k−n

Each gets at least one ordered onto functions broken permutations (n parts)

7. Identical
(
n+k−1

k

) ∑n
i=1 P (k, i)

no conditions multisets number partitions (≤ n parts)

8. Identical
(
n
k

)
1 if k ≤ n; 0 otherwise

Each gets at most one subsets

9. Identical
(

k−1
n−1

)
P (k, n)

Each gets at least one compositions (n parts) number partitions (n parts)
10. Identical 1 if k = n; 0 otherwise 1 if k = n; 0 otherwise
Each gets exactly one


