Math 29: Introduction and History of
Computability

March 28th, 2022

1 Course Structure

Welcome to Math 29! The course syllabus and relevant information not in-
cluded here can be found on the lcourse websitel

Your grade will be made up of class participation (15%), weekly homeworks
(30%), a midterm (25%), and a final (30%). Showing up to class, answering
questions, asking questions, and participating in any group activities/discussions
all count towards class participation. Anyone who attends and engages in class
regularly does not need to worry about the in-class grade. Any students who
are potentially falling behind will be gently warned before they lose any points.

Homeworks will be assigned each Wednesday and due by midnight the fol-
lowing Wednesday. They will cover material from the assigned week of lectures.
For example, Homework 1 will be assigned on Wednesday March 30th and will
cover the lecture material from Monday the 28th, Wednesday the 30th, and
Friday April 1st. Returned homework can be revised and re-submitted for par-
tial credit, with the second and subsequent resubmissions decreasing the possible
score. Section 2.6 in the textbook contains some helpful advice for writing proof.

The midterm and final exams will follow the same format. In-class, there
will be a knowledge quiz composed true or false, multiple choice, and short an-
swer questions. Each of these will account for 10% of your final grade. Both
exams will also have a take-home component, which will be worth 15% and 20%
respectively. The take-home midterm will take the place of the homework that
would otherwise be due on May 4th. The take-home final will be due at the
end of the final exam period. Unlike homework assignments, take-home
exams cannot be resubmitted.

On Thursdays, during the X-hour, Ben Logsdon will be running extra ses-
sions covering course material. These may include a mixture of lectures, work-
sheets, problem solving sessions, and more. Attendance and participation will
count towards your class participation grade.


https://math.dartmouth.edu/~m29s22/

2 History

For over a thousand years, we’ve known how to solve quadratic equations.
In particular, the quadratic equation, explicitly gives the roots of the equation

ax? +bxr +c=0 as
. —b+Vb?2 — dac
B 2a

This formula not only enables us to calculate what the solutions are, but en-
ables us to easily determine whether or not the solutions are real or complex by
checking the sign of the discriminant. Of course, curious mathematicians then
wondered: is there a general formula for solving other polynomials? Over the
years, similar, albeit significantly more complicated, formulas were found for
third and fourth degree polynomials.

The turn of the nineteenth century saw the Abel-Ruffini theorem, which
states that no such general equation exists for any higher order polynomial.
In other words, for fifth degree and higher, we don’t have a clean, uniform
method for finding roots of polynomials. This is an early example of a “non-
computability” result.

Questions of what we could and could not find an algorithm or “process”
for continued to be of interest to mathematicians. Ada Lovelace and Charles
Babbage created and implemented what would later come to be considered the
world’s first computer in the mid 19th century. In 1900, David Hilbert gave a
list of 23 famous open problems. Of these, two would turn out to have strong
connections to the this idea of having algorithms that can determine informa-
tion: the second and the tenth.

Hilbert’s second problem was to prove that arithmetic, the most basic part
of mathematics, is consistent. In other words, show that it is not possible to
prove that 0 = 1. Clearly, if this were to happen, our entire understanding of
numbers would collapse: not only is 0 =1, but then 0 =14+0=1+1 = 2.
Continuing in this fashion, we see that 0 = 1 would result in EVERY number
being equal to 0. Of course, this seems impossible because we know from ex-
perience that 0 # 1. The danger here is the principle of explosion: if we
can prove something false, then we can prove everything. If we can prove some-
thing false, then the system collapses. However, the seminal work of Kurt Godel
in the 1930’s showed that it is impossible to prove that we can avoid proving
0 = 1. Expansions of this result later proved something even stronger: if we are
given an algorithm that lists out some basic properties of arithmetic, there is
no algorithm that can then list out a complete list which is provable from those
properties.

Hilbert’s tenth problem concerns diophantine equations: polynomials in
finitely many variables with integer coefficients. Hilbert hopes to find a general



process, or algorithm, by which we can determine whether or not it has an in-
teger root. We know from the Abel-Ruffini theorem that even in the case of
one variable, we cannot always hope to find the roots. However, can we even
determine if they exist? The answer is still no, as proven in latter half of the
20th century by a collective of mathematicians including Julia Robinson and
Yuri Matiyasevich.

Much of this work would not be possible without a formal treatment of the
mere idea of an algorithm, or a process, by which information is decided upon.
Multiple different yet equivalent formal definitions of what it meant to be “recur-
sive,” later “computable,” were given and studied by the likes of Alonzo Church,
Stephen Kleene, and Alan Turing. These gave a mathematical statement about
what algorithms are, what they can do, and more importantly, what they can-
not do. This gave rise to the Church-Turing thesis (also known by many other
variations): that this formal notion of computability is exactly the correct one
to match our intuition. In other words, any piece of information that we might
one day devise a machine or algorithm to discern would in fact be computable
in the formal sense above. (Current models of quantum computation are no
exception: they provide outstanding benefits to efficiency and speed, but do not
fundamentally alter that which could be computed traditionally with unlimited
resources. )

Ironically, much of computability theory is the study of things which are not
computable. We will talk about many such sets in this course, the most famous
of which is the halting set. Basically, no computer can read arbitrary com-
puter code and figure out what it will do! (One reason why antivirus software
can never be perfected.) Emil Post and others spent much of the mid 20-th
century describing a variety of other sets with different properties which cannot
be described by an algorithm, i.e. sets that are not “computable.”

Given some piece of information that is not computable, the next question
becomes: what sort of secondary information can one use in order to determine
it? This leads to relative computability or oracle computability: a hierar-
chy which breaks down information based on how strong is is from a standpoint
of computational power. More knowledgeable sets, which can compute many
pieces of noncomputable information, are high on the list, while less knowledge-
able sets which can only compute a few pieces of noncomputable information
are much lower.



	Course Structure
	History

