
Math 29: Register Machines

April 1st, 2022

1 A Model of Computing

Last time, we talked about coding objects as natural numbers, various prop-
erties of functions, and how we could think of sets as functions. Now, we’ll start
to develop the theory of what it means for a function from the natural numbers
to the natural numbers to be (partially) computable, which will simultaneously
develop the theory of computation for sets and objects which we can code using
natural numbers.

A register machine is represented by a flow-chart with a unique Start
node, a unique Stop node, and finitely many nodes connected in-between. Pro-
gram flow begins at the Start node and advances to the unique output node.

Start ... Stop

There are infinitely many registers, one for each natural number, which each
contain a single natural number. Think of each register as a bucket which
contains some number of balls. Between the start and stop nodes are some
combination of addition nodes and subtraction nodes.

R+
i R−

i

i is the index of the register that the instruction is modifying. + repre-
sents an addition node, and − represents a subtraction node. The former puts
one ball in one bucket, and the latter removes one ball from a register if there
is one to be removed. In other words, the former adds one to the number in
one register, and the latter subtracts one if the number in the register is not zero.

1



An addition node R+
i has one at least one input node and one output node.

Once the program flow exits one of the input nodes, it enters the addition node.
It then adds one to the value in the i-th register, and advances program flow to
the output node. For example, the following simple program adds one to the
first register then stops.

Start R+
0 Stop

A subtraction node R−
i has at least one input node and two output nodes,

one labeled e. Once program flow exits one of the input nodes, it enters the
subtraction node. If the i-th register is empty, i.e. contains a 0, then it advances
program flow to the output node labeled e. If the i-th register is not empty,
then it is decremented by one and program flow advances to the other output
node. For example, the following simple program empties the second register
then stops.

Start R−
1 Stop

e

Given a register machineM and a natural number k, we get a partial function
M : ωk → ω such that M(x0, . . . , xk−1) is the value in the register Rk if the
register machine runs with each xi in the i-th register, and 0 in all the other
registers, and reaches the Stop node. (If we never reach the Stop node with
the given inputs, then M(x0, . . . , xk−1) ↑.) A function f : ωk → ω is said
to be (register) computable if there is some register machine M such that
f(x0, . . . , xk−1) = M(x0, . . . , xk−1) for all x0, . . . , xk−1 ∈ ωk. In other words,
the register machine computes the value of f on all inputs.

2



Lemma 1. Addition, i.e. the 2-variable function + : ω2 → ω such that
+(x, y) = x+ y, is computable.

Proof: We can verify that the following register machine program
computes the addition function, where it starts with x in R0, y in R1,
and 0’s in all other registers:

Start R−
0

R+
2

R−
1

R+
2

Stop
e e

Upon entering the first subtraction node, it removes one from the first
register and adds one to the third, repeating until the first register is
empty. The same then occurs for the second register. Once the second
register is empty, we reach the Stop node. At this point, the third
register started with a 0, and had a 1 added x times in the first loop
and y times in the second loop, so it now containes x+ y.

3



Lemma 2. Multiplication, i.e. the 2-variable function ∗ : ω2 → ω such that
∗(x, y) = xy, is computable.

Proof. Homework 1: Question 5.

Lemma 3. Exponentiation, i.e. the 2-variable function e : ω2 → ω such that
e(x, y) = xy is computable.

Proof. Homework 1: Question 6.

Lemma 4. If f : ω → ω and g : ω → ω are both computable, then their
composition g ◦ f is also computable.

Proof: As f and g are both computable, there are register machinesM
and N which, when n is in R0, output f(n) and g(n) in R1 respectively.
Therefore, consider the register machine

Start M R−
0

R−
1

R+
0

NStop

e

e

Here, theM andN blocks represent programming said register machines
into the above outline, with the input arrows representing their start
nodes and and the output arrows advancing from their stop nodes.

This program begins with n in R0 and runs the register machine M to
calculate f(n), which ends up in R1. Next, we empty R0 and then move
f(n) into R0. Then we run the the register machine N to calculate
g(f(n)), which is placed in R1. Finally, we terminate the program.

4


	A Model of Computing

